Formal modelling and analysis of ecosystems

Franck Pommereau ${ }^{1}$ Cédric Gaucherel ${ }^{2}$
William Atger ${ }^{1}$ Colin Thomas ${ }^{1,2}$
${ }^{1}$ IBISC, University of Évry / Paris-Saclay
${ }^{2}$ AMAP—INRA, CIRAD, Montpellier

Outline

Introduction

Modelling with rules and constraints
Exploring the dynamics
Going further with symbolic computation
Conclusion

Earth's 6th massive extinction event under way

EXAMPLES OF DECLINES IN NATURE

ECOSYSTEM EXTENT AND CONDITION
Natural ecosystems have declined by 47 per cent on average, relative to their earliest estimated states.

SPECIES EXTINCTION RISK

Approximately 25 per cent of species are already threatened with extinction in most animal and plant groups studied.

ECOLOGICAL COMMUNITIES

Biotic integrity - the abundance of naturallypresent species-has declined by 23 per cent on average in terrestrial communities.*

BIOMASS AND SPECIES ABUNDANCE

82\% The global biomass of wild mammals has fallen by 82 per cent. ${ }^{*}$ Indicators of vertebrate abundance have declined rapidly since 1970

NATURE FOR INDIGENOUS PEOPLES AND LOCAL COMMUNITIES

72%
72 per cent of indicators developed by indigenous peoples and local communities show ongoing deterioration of elements of nature important to them

* Since prehistory

Summary for policymakers of the global assessment report on biodiversity and ecosystem services - IPBES - May 2019

Understanding ecosystems \Rightarrow actions for their conservation

- formal modelling and analysis
- dynamics understanding
- tipping points
- catastrophic shifts
- causality
- paths to recovery
- abstraction \Rightarrow extract "laws"
- discrete modelling
- qualitative analysis
- confront with "in the field"
 studies (\& experiments)

Outline

Introduction

Modelling with rules and constraints

Exploring the dynamics
Going further with symbolic computation
Conclusion

Running example: a termites colony

Ecosystemic graph

Aka interaction/influence graph/network

Entities, rules, constraints

Reaction Rules formalism (RR)

inhabitants:
Rp+: reproductives
Wk-: workers
Sd-: soldiers
Te-: termitomyces
structures:
Ec-: egg chambers
Fg-: fungal gardens
resources:
Wd-: wood
competitors:
Ac+: ant competitors

```
constraints:
        Fg- >> Te-
rules:
    Rp+ >> Ec +
    Rp+, Ec+ >> Wk+
    Wk+ >> Wd+, Te+, Fg+, Ec+
    Wk+, Wd+ >> Sd+, Rp+
    Wk+, Te+ >> Wd-
    Wd- >> Wk-, Te-
    Wk- >> Fg-, Sd-
    Wk-, Rp- >> Ec-
    Ac+, Sd- >> Wk-, Rp-
```

Constraints are rules with a higher priority:

- no fungal garden \Rightarrow no fungi
- define transient states

Semantics

Proposition: Boolean networks \subsetneq reaction rules $=$ all Boolean LTS
Operational:

- state $=$ entities valuation
- transition $=$ application of a rule/constraint
- constraints have a higher priority
- no side-loops

Translation to Petri nets:

- entity \mapsto two complementary places
- rule/constraint \mapsto set of transitions
- transitions priorities
- static elimination of side-loops

Petri nets semantics

with read/inhibitor/reset arcs ecosystemic hypergraph Ac+, Sd- >> Wk-, Rp-

Remark: can be translated to standard Petri nets (original semantics) \Rightarrow side-loops, complementary places, several transitions per rule

Problem: can we unfold such nets? (master intern wanted)

Petri nets semantics

with read/inhibitor/reset arcs \Longleftrightarrow ecosystemic hypergraph
Ac+, Sd- >> Wk-, Rp-

Remark: can be translated to standard Petri nets (original semantics) \Rightarrow side-loops, complementary places, several transitions per rule

Problem: can we unfold such nets? (master intern wanted)

Semantics equivalence

reaction rules

Petri net
semantics

semantics space
state space Petri net

Outline

Introduction

Modelling with rules and constraints

Exploring the dynamics

Going further with symbolic computation

Conclusion

Full state space

Compact state spaces

Merged state space

Findings

- clear identification of collapses (deadlocks + basins)
- direct visualisation of the causes: transitions leading to deadlocks' basins
- direct depiction of catastrophic shifts
- transitions between components (SCC \rightarrow SCC/deadlock)
- identification of necessary actions
- transitions required to reach a SCC
- insights about resilience within SCC
- distance to exit
- asymmetric paths (hysteresis)
- identification of the crucial processes
- transitions that avoid collapses

Outline

Introduction

Modelling with rules and constraints

Exploring the dynamics

Going further with symbolic computation

Conclusion

Size does matter

- degenerated cases
- a single large SCC
- unfriendly cases
- two many components
- "just large" cases

- too many states $(4,216,208)$
- too many components $(304,646)$
- too many everything (13,214,272 edges)

Mitigation:

- compact state spaces
- typically: 20 to 50% reduction
- discard small SCC
- merged into basins

- small = unimportant?

Replacing merges with splits

Explicit approach:

1. explicitly compute states
2. merge classes

Symbolic approach:

1. compute symbolic state space
2. extract/split classes

Component graph

Definition

Let $L \stackrel{\mathrm{df}}{=}\left(\mathcal{R}, s_{0}, \mathcal{A}, \rightarrow\right)$ be a labelled transition system (LTS).

1. Component decomposition of L : a partition \mathcal{C} of \mathcal{R}.

- topological components: initial state, deadlocks, SCC, basins

2. Component graph of L wrt $\mathcal{C}: \operatorname{LTS} L / \mathcal{C} \stackrel{\text { df }}{=}\left(\mathcal{C},\left\langle s_{0}\right\rangle_{\mathcal{C}}, \mathcal{A}_{\mathcal{C}}, \rightarrow_{\mathcal{C}}\right)$ with

- $\langle s\rangle_{\mathcal{C}} \in \mathcal{C}$ such that $s \in\langle s\rangle_{\mathcal{C}}$
$\rightarrow \rightarrow_{\mathcal{C}}$ df $\left\{\left(\langle s\rangle_{\mathcal{C}}, a,\left\langle s^{\prime}\right\rangle_{\mathcal{C}}\right) \mid s \xrightarrow{\rightarrow} s^{\prime} \wedge\langle s\rangle_{\mathcal{C}} \neq\left\langle s^{\prime}\right\rangle_{\mathcal{C}}\right\}$
- $\mathcal{A}_{\mathcal{C}} \stackrel{\text { df }}{=}\left\{a \in \mathcal{A} \mid \exists C, C^{\prime} \in \mathcal{C}: C \xrightarrow{a} \mathcal{C} C^{\prime}\right\}$

Silencing internal actions

Silencing internal actions

Weak simulations

Correct/complete abstractions

$$
\begin{aligned}
& L / \mathcal{C} \precsim L \\
& L \precsim L / \mathcal{C} \\
& \left\langle s_{0}\right\rangle \sim s_{0} \\
& s_{0} \sim\left\langle s_{0}\right\rangle \\
& \begin{array}{l}
S \sim s \\
\mid a \sim \tau^{\prime} \\
S^{\prime} \sim \tau^{\prime}
\end{array} \\
& \begin{array}{l}
s \sim S \\
b^{\prime} \sim \\
s^{\prime} \sim S
\end{array}
\end{aligned}
$$

Remark: if both, we have a cosimulation (not a bisimulation) Proposition: $L \precsim L / \mathcal{C}$ always holds

Symbolic primitives

Efficiently computable on decision diagrams

$$
\begin{aligned}
\text { successor function } & \vee \operatorname{succ}(S) \stackrel{\text { df }}{=}\left\{s^{\prime} \mid s \in S \wedge s \rightarrow s^{\prime}\right\} \\
\text { predecessor function } & \triangleright \operatorname{pred}(S) \stackrel{\text { df }}{=}\left\{s^{\prime} \mid s \in S \wedge s^{\prime} \rightarrow s\right\} \\
\text { identity function } & \vee \text { id }
\end{aligned}
$$

least fixed point of succ $>$ succ* $^{*} \stackrel{\text { df }}{=}$ fixpoint $($ succ \cup id) least fixed point of pred $>$ pred $^{*} \stackrel{\text { df }}{=}$ fixpoint $($ pred $\cup i d)$

- reach* $\stackrel{\text { df }}{=}$ succ* $^{\circ} \cap$ pred* *
greatest fixed point of succ $>\operatorname{succ}^{\omega} \stackrel{\text { df }}{=}$ fixpoint (succ $\left.\cap i d\right)$
greatest fixed point of pred $>\operatorname{pred}^{\omega} \stackrel{\text { df }}{=}$ fixpoint (pred $\left.\cap i d\right)$
- reach $^{\omega} \stackrel{\text { df }}{=} \operatorname{succ}^{\omega} \cap \operatorname{pred}^{\omega}$

Computing SCC (1/2)

Computing SCC (1/2)

Computing SCC (1/2)

Computing SCC (1/2)

$$
\operatorname{succ}^{\omega} \cap \operatorname{pred}^{\omega}=\text { reach }^{\omega}
$$

Computing SCC (1/2)

$$
\operatorname{succ}^{\omega} \cap \operatorname{pred}^{\omega}=\text { reach }^{\omega}
$$

Computing SCC (1/2)

$$
\operatorname{succ}^{\omega} \cap \operatorname{pred}^{\omega}=\text { reach }^{\omega}
$$

Computing SCC $(1 / 2)$

Computing SCC (1/2)
$\operatorname{succ}^{\omega} \cap \operatorname{pred}^{\omega}=$ reach $^{\omega}$
succ* $^{*} \cap$ pred* $^{*}=$ reach*

Computing SCC (1/2)
$\operatorname{succ}^{\omega} \cap \operatorname{pred}^{\omega}=$ reach $^{\omega}$
succ* $^{*} \cap$ pred* $^{*}=$ reach*

Computing SCC (1/2)
$\operatorname{succ}^{\omega} \cap \operatorname{pred}^{\omega}=$ reach $^{\omega}$
succ* $^{*} \cap$ pred* $^{*}=$ reach*

Computing SCC (1/2)
$\operatorname{succ}^{\omega} \cap \operatorname{pred}^{\omega}=$ reach $^{\omega}$
succ* $^{*} \cap$ pred* $^{*}=$ reach*

Computing SCC (1/2)
$\operatorname{succ}^{\omega} \cap \operatorname{pred}^{\omega}=$ reach $^{\omega}$
succ* $^{*} \cap$ pred* $^{*}=$ reach*

Computing SCC (1/2)
$\operatorname{succ}^{\omega} \cap \operatorname{pred}^{\omega}=$ reach $^{\omega}$
succ* $^{*} \cap$ pred $^{*}=$ reach*

Computing SCC (1/2)

Computing SCC (1/2)

$\operatorname{succ}^{\omega} \cap \operatorname{pred}^{\omega}=\operatorname{reach}^{\omega}$

$$
\text { succ*}^{*} \cap \text { pred }^{*}=\text { reach }^{*}
$$

Computing SCC (2/2)

1 def $\operatorname{SCC}(\mathcal{R}) \mapsto \mathcal{S}:=\emptyset:$
$2 \quad H:=\operatorname{reach}^{\omega}(\mathcal{R})$
while $H \neq \emptyset$:
pick $s \in H$
$S:=$ reach $^{*}(s)$
if $|S|>1$:
$\mathcal{S}:=\mathcal{S} \cup\{S\}$
$H:=\operatorname{reach}^{\omega}(H \backslash S)$

Computing basins

1 def Basins $(\mathcal{R}, \mathcal{I}) \mapsto \mathcal{B}$:
$2 \quad \mathcal{D}:=\mathcal{R} \backslash \operatorname{pred}(\mathcal{R})$
$\mathcal{P}:=\operatorname{SCC}(\mathcal{R}) \cup\{\{d\} \mid d \in \mathcal{D}\}$
if $\mathcal{I} \cap C=\emptyset \quad \forall C \in \mathcal{P}$:
$\mathcal{P}:=\mathcal{P} \cup\{\mathcal{I}\}$
$\mathcal{B}:=\left\{\mathcal{R} \backslash \cup_{C \in \mathcal{P}} C\right\}$
for $C \in \mathcal{P}$:
$P:=\operatorname{pred}^{*}(C)$
$\mathcal{B}:=\{B \cap P, B \backslash P \mid B \in \mathcal{B}\} \backslash \emptyset$

Computing compact graphs

Symbolic computation as previously with:
constraints $\downarrow \mathcal{U} \stackrel{\text { df }}{=} u_{1} \cup \cdots \cup u_{k}$
transient states $\boldsymbol{\mathcal { T }} \stackrel{\mathrm{df}}{=} \operatorname{pred}_{\mathcal{U}}(\mathcal{R})$ initial state $S_{0}^{\prime} \stackrel{\text { df }}{=} \operatorname{succ}_{\mathcal{U}}{ }^{*}\left(\left\{s_{0}\right\}\right) \backslash \mathcal{T}$
successor function $>$ succ $^{\prime} \stackrel{\text { df }}{=}\left(\right.$ succu $_{\mathcal{U}}{ }^{*}$ o succ) $\backslash \mathcal{T}$
predecessor function $\downarrow \operatorname{pred}^{\prime} \stackrel{\text { df }}{=}\left(\operatorname{pred} \circ \operatorname{pred}_{\mathcal{U}}{ }^{*}\right) \backslash \mathcal{T}$

Proposition: compact state space is always bisimilar to full state space

Outline

Introduction

Modelling with rules and constraints

Exploring the dynamics

Going further with symbolic computation

Conclusion

Scientific production \& activity

- 1 founding paper
- 1 conference + journal paper
- 3 funded projects
- 12+ master internships
\Rightarrow more papers in the queue
- 2 PhD in progress
- a software implementation

Methods in Ecology and Evolution

Ongoing \& future works

- coarser-grained decompositions
- consider deadlocks and SCC hull as a whole
- semi-symbolic state-space
- compute explicitly the successors of each symbolic state
- use compiled model (bitfields \& bitwise logic)
- user-guided decomposition
- irreversible transitions
- measures on the states classes (PCA)
- Petri nets transitions invariants, unfoldings
- hints \& requests from the modeller (LTL/CTL)
- other trends of research (with H Klaudel \& C. Di Giusto)
- quantitative modelling with simulation
- static model reductions
- patterns identification
- comparisons of models

