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Formal modelling and analysis of ecosystems
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Earth’s 6th massive extinction event under way

EXAMPLES OF DECLINES IN NATURE

ECOSYSTEM EXTENT AND CONDITION
47% W Natural ecosystems have declined by

47 per cent on average, relative to their
earliest estimated states.

SPECIES EXTINCTION RISK
259, ™ Approximately 25 per cent of species are

already threatened with extinction in
most animal and plant groups studied.

s
! \ ECOLOGICAL COMMUNITIES
239, = Biotic integrity—the abundance of naturally-
present species—has declined by 23 per
cent on average in terrestrial communities.*

BIOMASS AND SPECIES ABUNDANCE
The global biomass of wild mammals has

82% M fallen by 82 per cent.* Indicators of
vertebrate abundance have declined
rapidly since 1970

NATURE FOR INDIGENOUS PEOPLES
AND LOCAL COMMUNITIES

729, W 72 per cent of indicators developed by
indigenous peoples and local communities
show ongoing deterioration of elements
of nature important to them

* Since prehistory
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Understanding ecosystems = actions for their conservation

v

formal modelling and analysis

v

dynamics understanding
> tipping points v 2 _
» catastrophic shifts R e
» causality L A
> paths to recovery :

v

abstraction = extract “laws”

» discrete modelling
» qualitative analysis

confront with “in the field”
StUdies (& experiments) Christoph Niemann, NYT

\4
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Modelling with rules and constraints
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Running example: a termites colony

Fungus combs

Nursery gallaries

Royal cell
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Ecosystemic graph

Aka interaction /influence graph/network

wood

soldiers

@ fungal garden

workers Wk

egg chamber

reproductives

termitomyces

@ ant competitors
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Modelling with rules and constraints
Entities, rules, constraints

Reaction Rules formalism (RR)

inhabitants: constraints:

Rp+: reproductives Fg- >> Te-

Wk-: workers rules:

Sd-: soldiers Rp+ >> Ec+

Te-: termitomyces Rp+, Ec+ >> Wk+
structures: Wk+ >> Wd+, Te+, Fg+, Ec+

Ec-: egg chambers Wk+, Wd+ >> Sd+, Rp+

Fg-: fungal gardens Wk+, Te+ >> Wd-
resources: Wd- >> Wk-, Te-

Wd-: wood Wk- >> Fg-, Sd-
competitors: Wk-, Rp- >> Ec-

Ac+: ant competitors Ac+, 8d- >> Wk-, Rp-

Constraints are rules with a higher priority:
» no fungal garden = no fungi

» define transient states

8/30
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Semantics

Proposition: Boolean networks C reaction rules = all Boolean LTS

Operational:
> state = entities valuation
» transition = application of a rule/constraint

» constraints have a higher priority

v

no side-loops

Translation to Petri nets:

> entity — two complementary places

\4

rule/constraint — set of transitions

v

transitions priorities

v

static elimination of side-loops



Petri nets semantics

with read/inhibitor/reset arcs

Ac+, Sd- >> Wk-, Rp-

Ac '///ji:) Wk
4 O R

Remark: can be translated to standard Petri nets (original semantics)
= side-loops, complementary places, several transitions per rule

Problem: can we unfold such nets? (master intern wanted)
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Petri nets semantics
with read/inhibitor/reset arcs <= ecosystemic hypergraph

Ac+, Sd- >> Wk-, Rp-

Ac '///ji:) Wk
4 O R

Remark: can be translated to standard Petri nets (original semantics)
= side-loops, complementary places, several transitions per rule

Problem: can we unfold such nets? (master intern wanted)



F. Pommereau, C. Gaucherel, et al. Modelling with rules and constraints 11 /30

Semantics equivalence

Petri net
. semantics .
reaction rules Petri net
state space marking graph
semantics semantics
state space : marking graph

equivalence
(theorem)

an
+.%
AR
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Exploring the dynamics
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Full state space

19/3\R5
o 24/8
)/23’“\ 12/8 /
Rs
© \
/ “6,11/111"L /“' /
18/14—=— /20/8
., .
\ \ /“9/ ﬂ\\u/s/‘k
5/14
/
3/14/” ‘\
et T 23
\ g I % > nodes are the states
N 3 ~ 2 R ,14/14
& 9/14‘ e .
» classification (colours & shapes)
015 64

> initial state
» deadlocks
» strongly connected components

> attraction basins
> edges are the transitions
/ » labelled by rules/constraints




Compact state spaces
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Merged state space

13

» 1 class — 1 node
%
2 » much smaller
» macro dynamics
» exhibits shifts
(14)
w—
Rg

T

(8)
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Findings

» clear identification of collapses (deadlocks + basins)

» direct visualisation of the causes:
transitions leading to deadlocks’ basins

v

direct depiction of catastrophic shifts
» transitions between components (SCC — SCC/deadlock)

v

identification of necessary actions

\4

» transitions required to reach a SCC \
insights about resilience within SCC /

» distance to exit &/ \

» asymmetric paths (hysteresis) s
identification of the crucial processes © /
> transitions that avoid collapses

v
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Going further with symbolic computation



Size does matter

» degenerated cases
» a single large SCC
» unfriendly cases
> two many components

> “just large” cases

» too many states (4,216,208)
» too many components (304,646)
» too many everything (13,214,272

Mitigation:
» compact state spaces
» typically: 20 to 50% reduction
» discard small SCC

> merged into basins
» small = unimportant?
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Replacing merges with splits

Explicit approach:

1. explicitly compute states

2. merge classes

0 o Wd
Wk
wd

Te

Te

Sd

Sd

Sd

Sd

Sd

Rp

Rp

Rp

Rp

Fg

Fg

Fg

Fg

Symbolic approach:

2. extract/split classes

0
o1l
0 ¢ o
Ac
1 1
1 Ec
o1l
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1. compute symbolic state space
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Component graph

Definition
Let L < (R, s0,.A, —) be a labelled transition system (LTS).

1. Component decomposition of L: a partition C of R.
» topological components: initial state, deadlocks, SCC, basins

2. Component graph of L wrt C: LTS L/C £ (C, (so)¢, Ac, —¢) with

> <s>c§ C such that s € (s)¢
> —e ={((s)c,a,(s')c) | s 5 ' A(s)e # (s')e}
» Ac={ac A|3C,C'eC:C 2. C}

15
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Silencing internal actions
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Silencing internal actions
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Weak simulations

Correct/complete abstractions

L/C=L L2L/C
(s0) ~ %0 o ~ (so)
S ~s s~ S
la lr*ar* lT

S~ s~ S

ln\
2
wn

Remark: if both, we have a cosimulation (not a bisimulation)
Proposition: L X L/C always holds

22 /30
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Symbolic primitives

Efficiently computable on decision diagrams

succ(S) £ {s' |se€ SAs— s}
pred(S) £ {s' | s € SAs — s}
id

successor function

predecessor function

identity function

least fixed point of succ » succ* = fixpoint(succ Uid)
reach* < succ* M pred*

greatest fixed point of succ » succ® £ fixpoint(succ Nid)

pred” = fixpoint(pred Nid)
reach® < succ® N pred®

>
>
>
>

least fixed point of pred » pred* = fixpoint(pred Uid)
>
>
greatest fixed point of pred »
>
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Computing SCC (1/2)

succ®
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Computing SCC (1/2)

succ®
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Computing SCC (1/2)

succ®
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Computing SCC (1/2)

succ® N pred” = reach®”
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Computing SCC (1/2)
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Computing SCC (2/2)

def SCC (R) — S :=0:
H := reach*(R)
while H # (:

pick s H

S = reach*(s)

if |S] > 1:

‘ S :=SU{S}

H :=reach”(H\ S)

0 N O o~ W =




Computing basins

1 def Basins (R,Z) — B:

2 D =R\ pred(R)

3 | P:=SCC(R)U{{d}|deD}
4« | fINC=0 VCeP:

5 | P=PuU{T}

6 B:={R\UcepC}

7 for C € P:

8
9

X P
P := pred*(C) BAP B\P
B:={BNP,B\P|BeB}\0 .
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Computing compact graphs

Symbolic computation as previously with:
constraints » U = up U U g
transient states » T < pred;,(R)
initial state » S} = succy*({so}) \ T
successor function » succ’ = (succy* osucc) \ T

predecessor function » pred’ < (pred o pred,*) \ T

Proposition: compact state space is always bisimilar to full state space
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Scientific production & activity
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Ongoing & future works

» coarser-grained decompositions
» consider deadlocks and SCC hull as a whole

» semi-symbolic state-space
» compute explicitly the successors of each symbolic state
» use compiled model (bitfields & bitwise logic)

» user-guided decomposition

> irreversible transitions
» measures on the states classes (PCA)
> Petri nets transitions invariants, unfoldings
> hints & requests from the modeller (LTL/CTL)
other trends of research (with H Klaudel & C. Di Giusto)
» quantitative modelling with simulation
» static model reductions
> patterns identification
» comparisons of models

v
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