Formal modelling and analysis of ecosystems

Franck Pommereau¹ Cédric Gaucherel² William Atger¹ Colin Thomas^{1,2}

¹IBISC, University of Évry / Paris-Saclay

²AMAP—INRA, CIRAD, Montpellier

Introduction

Outline

Introduction

Modelling with rules and constraints

Introduction

Earth's 6th massive extinction event under way

Summary for policymakers of the global assessment report on biodiversity and ecosystem services - IPBES - May 2019

Understanding ecosystems \Rightarrow actions for their conservation

- formal modelling and analysis
- dynamics understanding
 - tipping points
 - catastrophic shifts
 - causality
 - paths to recovery
- ▶ abstraction ⇒ extract "laws"
 - discrete modelling
 - qualitative analysis
- confront with "in the field" studies (& experiments)

Christoph Niemann, NYT

Outline

Introduction

Modelling with rules and constraints

Exploring the dynamics

Going further with symbolic computation

Conclusion

Running example: a termites colony

Ecosystemic graph

Aka interaction/influence graph/network

Entities, rules, constraints

Reaction Rules formalism (RR)

inhabitants:		constraints:
Rp+:	reproductives	Fg- >> Te-
Wk-:	workers	rules:
Sd-:	soldiers	Rp+ >> Ec+
Te-:	termitomyces	Rp+, Ec+ >> Wk+
structures:		Wk+ >> Wd+, Te+, Fg+, Ec+
Ec-:	egg chambers	Wk+, Wd+ >> Sd+, Rp+
Fg-:	fungal gardens	Wk+, Te+ >> Wd-
resources:		Wd- >> Wk-, Te-
Wd-:	wood	Wk- >> Fg-, Sd-
competitors:		Wk-, Rp- >> Ec-
Ac+:	ant competitors	Ac+, Sd- >> Wk-, Rp-

Constraints are rules with a higher priority:

- no fungal garden \Rightarrow no fungi
- define transient states

Semantics

Proposition: Boolean networks \subsetneq reaction rules = all Boolean LTS

Operational:

- state = entities valuation
- transition = application of a rule/constraint
- constraints have a higher priority
- no side-loops

Translation to Petri nets:

- entity \mapsto two complementary places
- rule/constraint \mapsto set of transitions
- transitions priorities
- static elimination of side-loops

Petri nets semantics

with read/inhibitor/reset arcs <=> ecosystemic hypergraph

Remark: can be translated to standard Petri nets (original semantics) ⇒ side-loops, complementary places, several transitions per rule

Problem: can we unfold such nets? (master intern wanted)

Petri nets semantics

with read/inhibitor/reset arcs \iff ecosystemic hypergraph

Remark: can be translated to standard Petri nets (original semantics) ⇒ side-loops, complementary places, several transitions per rule

Problem: can we unfold such nets? (master intern wanted)

Semantics equivalence

Outline

Introduction

Modelling with rules and constraints

Exploring the dynamics

Going further with symbolic computation Conclusion

Exploring the dynamics

Full state space

Compact state spaces

Merged state space

Findings

- clear identification of collapses (deadlocks + basins)
 - direct visualisation of the causes: transitions leading to deadlocks' basins
- direct depiction of catastrophic shifts
 - transitions between components (SCC \rightarrow SCC/deadlock)
- identification of necessary actions
 - transitions required to reach a SCC
- insights about resilience within SCC
 - distance to exit
 - asymmetric paths (hysteresis)
- identification of the crucial processes
 - transitions that avoid collapses

Outline

Introduction

Modelling with rules and constraints

Exploring the dynamics

Going further with symbolic computation

Conclusion

Size does matter

- degenerated cases
 - a single large SCC
- unfriendly cases
 - two many components
- "just large" cases
 - ▶ too many states (4,216,208)
 - too many components (304,646)
 - too many everything (13,214,272 edges)

Mitigation:

- compact state spaces
 - typically: 20 to 50% reduction
- discard small SCC
 - merged into basins
 - small = unimportant?

Replacing merges with splits

Explicit approach:

- 1. explicitly compute states
- 2. merge classes

Symbolic approach:

- 1. compute symbolic state space
- 2. extract/split classes

Component graph

Definition

Let $L \stackrel{\text{df}}{=} (\mathcal{R}, s_0, \mathcal{A}, \rightarrow)$ be a labelled transition system (LTS).

- 1. Component decomposition of L: a partition C of \mathcal{R} .
 - ► topological components: initial state, deadlocks, SCC, basins
- 2. Component graph of *L* wrt C: LTS $L/C \stackrel{\text{df}}{=} (C, \langle s_0 \rangle_C, \mathcal{A}_C, \rightarrow_C)$ with

•
$$\langle s \rangle_{\mathcal{C}} \in \mathcal{C}$$
 such that $s \in \langle s \rangle_{\mathcal{C}}$

 $\blacktriangleright \rightarrow_{\mathcal{C}} \stackrel{\text{df}}{=} \{ (\langle s \rangle_{\mathcal{C}}, a, \langle s' \rangle_{\mathcal{C}}) \mid s \stackrel{a}{\to} s' \land \langle s \rangle_{\mathcal{C}} \neq \langle s' \rangle_{\mathcal{C}} \}$

$$\blacktriangleright \ \mathcal{A}_{\mathcal{C}} \stackrel{\text{\tiny dr}}{=} \{ a \in \mathcal{A} \mid \exists C, C' \in \mathcal{C} : C \stackrel{a}{\to}_{\mathcal{C}} C' \}$$

Silencing internal actions

Silencing internal actions

Weak simulations

Correct/complete abstractions

Remark: if both, we have a cosimulation (not a bisimulation) Proposition: $L \preceq L/C$ always holds

Symbolic primitives

Efficiently computable on decision diagrams

successor function \blacktriangleright succ $(S) \stackrel{\text{df}}{=} \{s' \mid s \in S \land s \to s'\}$ predecessor function \blacktriangleright pred $(S) \stackrel{\text{df}}{=} \{s' \mid s \in S \land s' \to s\}$ identity function \blacktriangleright id least fixed point of succ \blacktriangleright succ^{*} $\stackrel{\text{df}}{=}$ fixpoint(succ \cup id)

least fixed point of pred \blacktriangleright pred^{*} $\stackrel{\text{df}}{=}$ fixpoint(pred \cup id)

• reach^{*}
$$\stackrel{\text{df}}{=}$$
 succ^{*} \cap pred^{*}

- greatest fixed point of succ \blacktriangleright succ^{ω} $\stackrel{\text{df}}{=}$ fixpoint(succ \cap id)
- greatest fixed point of pred \blacktriangleright pred^{ω} $\stackrel{\text{df}}{=}$ fixpoint(pred \cap id)

► reach^{$$\omega$$} = succ ^{ω} \cap pred ^{ω}

Computing SCC (1/2)

 $\operatorname{succ}^{\omega} \cap \operatorname{pred}^{\omega} = \operatorname{reach}^{\omega}$

$\mathsf{succ}^\omega \cap \mathsf{pred}^\omega = \mathsf{reach}^\omega$

$\mathsf{succ}^{\omega} \cap \mathsf{pred}^{\omega} = \mathsf{reach}^{\omega}$

$\mathsf{succ}^{\omega} \cap \mathsf{pred}^{\omega} = \mathsf{reach}^{\omega}$

$\mathsf{succ}^{\omega} \cap \mathsf{pred}^{\omega} = \mathsf{reach}^{\omega}$

$succ^{\omega} \cap pred^{\omega} = reach^{\omega}$

$succ^{\omega} \cap pred^{\omega} = reach^{\omega}$

$\mathsf{succ}^{\omega} \cap \mathsf{pred}^{\omega} = \mathsf{reach}^{\omega}$

$\mathsf{succ}^{\omega} \cap \mathsf{pred}^{\omega} = \mathsf{reach}^{\omega}$

Computing SCC (2/2)

1 def SCC
$$(\mathcal{R}) \mapsto \mathcal{S} := \emptyset$$
:
2 $H := \operatorname{reach}^{\omega}(\mathcal{R})$
3 while $H \neq \emptyset$:
4 $\operatorname{pick} s \in H$
5 $S := \operatorname{reach}^*(s)$
6 $\operatorname{if} |S| > 1$:
7 $\mathcal{S} := \mathcal{S} \cup \{S\}$
8 $H := \operatorname{reach}^{\omega}(H \setminus S)$

Computing basins

1 def Basins
$$(\mathcal{R}, \mathcal{I}) \mapsto \mathcal{B}$$
:
2 $\mathcal{D} := \mathcal{R} \setminus \operatorname{pred}(\mathcal{R})$
3 $\mathcal{P} := \operatorname{SCC}(\mathcal{R}) \cup \{\{d\} \mid d \in \mathcal{D}\}$
4 if $\mathcal{I} \cap \mathcal{C} = \emptyset \quad \forall \mathcal{C} \in \mathcal{P}$:
5 $|\mathcal{P} := \mathcal{P} \cup \{\mathcal{I}\}$
6 $\mathcal{B} := \{\mathcal{R} \setminus \cup_{\mathcal{C} \in \mathcal{P}} \mathcal{C}\}$
7 for $\mathcal{C} \in \mathcal{P}$:
8 $|\mathcal{P} := \operatorname{pred}^*(\mathcal{C})$
9 $|\mathcal{B} := \{B \cap \mathcal{P}, B \setminus \mathcal{P} \mid B \in \mathcal{B}\} \setminus \emptyset$
 \mathcal{B}

С

Computing compact graphs

Symbolic computation as previously with:

$$\begin{array}{c} \text{constraints} \blacktriangleright \mathcal{U} \stackrel{\mathrm{df}}{=} u_1 \cup \cdots \cup u_k \\ \text{transient states} \blacktriangleright \mathcal{T} \stackrel{\mathrm{df}}{=} \operatorname{pred}_{\mathcal{U}}(\mathcal{R}) \\ \text{initial state} \blacktriangleright S'_0 \stackrel{\mathrm{df}}{=} \operatorname{succ}_{\mathcal{U}}^*(\{s_0\}) \setminus \mathcal{T} \\ \text{successor function} \blacktriangleright \operatorname{succ'} \stackrel{\mathrm{df}}{=} (\operatorname{succ}_{\mathcal{U}}^* \circ \operatorname{succ}) \setminus \mathcal{T} \\ \text{predecessor function} \blacktriangleright \operatorname{pred'} \stackrel{\mathrm{df}}{=} (\operatorname{pred} \circ \operatorname{pred}_{\mathcal{U}}^*) \setminus \mathcal{T} \end{array}$$

Proposition: compact state space is always bisimilar to full state space

Outline

Introduction

Modelling with rules and constraints

Exploring the dynamics

Going further with symbolic computation

Conclusion

Conclusion

FCOLOGICAL

Scientific production & activity

- 1 founding paper
- 1 conference + journal paper
- 3 funded projects
- ▶ 12+ master internships
 ⇒ more papers in the queue
- 2 PhD in progress
- a software implementation

Methods in Ecology and Evolution

Editors: Rob Freckleton, Aaron Ellison, Lee Hsiang Liow and Bob O'Hara Impact factor: 6.36 ISI Journal Citation Reports © Ranking 2017: 9/158 (Ecology)

Online ISSN: 2041-210X

Ongoing & future works

- coarser-grained decompositions
 - consider deadlocks and SCC hull as a whole
- semi-symbolic state-space
 - compute explicitly the successors of each symbolic state
 - use compiled model (bitfields & bitwise logic)
- user-guided decomposition
 - irreversible transitions
 - measures on the states classes (PCA)
 - Petri nets transitions invariants, unfoldings
 - hints & requests from the modeller (LTL/CTL)
- other trends of research (with H Klaudel & C. Di Giusto)
 - quantitative modelling with simulation
 - static model reductions
 - patterns identification
 - comparisons of models