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Smart Parallel Algorithms for Model Checking

Model checking requires the exploration of very large, implicit graphs
These graphs are generated from specifications (models, programs)

Smart Algorithms: exponential gains in time/memory
Partial Order Reduction: only representative interleavings
Binary Decision Diagrams: concise representation with logic
Symmetry Reduction, Abstraction, . . .

Parallel Algorithms: at most linear speedup in # processors
Clusters of computers (distributed memory)
Multi-core processors (parallel algorithms, NUMA)
GPU (many-core, not considered here)

Required: parallelisation of smart algorithms!
Challenge: efficiency = time-optimal + linear speedup
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Opportunities and obstacles in parallel model checking

Distributed Model Checking
More memory is available (NoW = Network of Workstations)
Price: communication costs
Main limitation: latency and throughput of the network
Redesign algorithms (load balancing, latency hiding, speculation)

Multi-core Model Checking
State space is available in shared memory: efficient communication
Main limitation: memory bus contention, cache coherence, locking
Graphs: irregular memory access (hash tables, BDDs)
Computer architecture: from SMP to NUMA
Efficiency: lock-free (CAS, memory barriers), be cache-line aware

In both cases, thorough experimental evaluation is important
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History: successful PDMC workshop series (2002-2012)
1990 Kimura & Clarke, parallel algorithm for constructing BDDs (SMP)
1997 Stern & Dill, parallelizing the Murφ verifier (NoW, MPI)

2000 Heyman, Grumberg & Schuster, distributed symbolic model checking
2001 Barnat, Brim & Cerna, distributed LTL model checking (DiVinE)
2002 Behrman etal, distributed timed model checking (Uppaal)
2003 Blom, Lisser, Orzan, vdPol, Weber, distributed bisimulation (µCRL)
2004 Chung & Ciardo, saturation NoW (symbolic reachability for Petri nets)
2007 Barnat, Brim & Rockai, scalable multi-core LTL model checking
2007 Holzman & Bosnacki, multi-core model checking with SPIN
2008 Holzman, Joshi & Groce, swarmed verification with SPIN
2009 Ciardo, parallel symbolic reachability is difficult

Parallel model checking compromises on worst case performance
Challenge: scalable & efficient multi-core model checking

2011 Laarman & vdPol, Multi-core Nested DFS
2013 Van Dijk & vdPol, Scalable multi-core BDD algorithms
2016 Bloemen & vdPol, Multi-core DFS SCC algorithm
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3 PhD theses from University of Twente

Alfons Laarman: Parallel Nested Depth-First Search (2010-2014)
lock-free hashtable, state compression (make-over: Freark vd Berg)
parallel NDFS (now formally verified by Wytse Oortwijn)
compatible with partial-order reduction: LTL-X model checking

Tom van Dijk: Concurrent Decision Diagrams (2012-2016)
concurrent garbage collection, lossy cache, task scheduler
parallel symbolic reachability, bisimulation minimisation, saturation
heterogeneous distributed + multi-core version (Wytse Oortwijn)

Vincent Bloemen: Parallel Strongly Connected Components (2016-2019)
based on DFS and sharing info on partial SCCs
concurrent Union-Find structure + iterable cyclic list
LTL model checking with Büchi automata, Rabin automata, etc.
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Overview

1 Introduction

2 Strongly Connected Components
A simple parallel SCC algorithm
Dijkstra’s sequential SCC algorithm
A parallel DFS algorithm for SCCs

3 Multicore Model Checking
Explicit-state LTL model checking
Symbolic model checking
LTSmin: high-performance model checker

4 Conclusion
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Strongly Connected Component (SCC)

Setting: finite graph with directed edges
SCCs: maximal components of � ∩�

a b c

d e f g

h i j k

Applications: LTL model checking, fairness, evaluation of Markov Chains
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Forward-Backward (FB) parallel SCC Algorithm
1. Select a pivot node

a b c

d e f g

h i j k

Backward slice Forward slice

SCC

Remaining slices can be processed independently in parallel
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Forward-Backward (FB) parallel SCC Algorithm
2. Compute its forward reachable set (F)
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Forward-Backward (FB) parallel SCC Algorithm
3. Compute its backward reachable set (B)

a b c

d e f g

h i j k

Backward slice Forward slice

SCC

Remaining slices can be processed independently in parallel
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Finding SCCs on-the-fly (path-based algorithm)
For model checking, an on-the-fly SCC algorithm is preferable:

bug finding: early termination when a bug in the model is detected
portability: we restrict model access to a next-state function

d ?

?

NB: this is not yet necessarily a maximal SCC,
since its successors are not completely explored
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Maintain (partial) SCCs in a Union-Find data structure
Union-Find structure [Tarjan, van Leeuwen, J ACM 1984]:

supports disjoint subsets, which can be merged
basic functions: Union and Find (unique representative)

a

b c

d

e

f g

Reversed forest, nodes direct towards their representative root
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a
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d

e

f g
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Maintain (partial) SCCs in a Union-Find data structure
Union-Find structure [Tarjan, van Leeuwen, J ACM 1984]:

supports disjoint subsets, which can be merged
basic functions: Union and Find (unique representative)

a

b c

d

e

f g

Unite(f,d): Find the roots of f and d, and update one of them
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Dijkstra’s SCC Algorithm [1976]

v

...

...

w

...

...

R

Uses stack R (push, pop, top) and disjoint-set S (union, find, enum)
Also maintains sets Visited and Explored, initially ∅

1 procedure SCC(v)
2 · Visited := Visited ∪ {v}
3 · R.push(v)
4 · for each w ∈ next_state(v)
5

· · if w ∈ Explored · · · · · · · // complete SCC
6 · · · then continue
7 · · else if w /∈ Visited· · · · · // unseen state
8 · · · then SCC(w)
9 · · else · · · · · · · · · · · · // cycle found

10 · · · while S.find(v) 6= S.find(w) do
11 · · · · S.union(R.pop(), R.top())
12 · if v = R.top() then · · · · · // completed SCC
13 · · report SCC S.enum(v)
14 · · Explored := Explored ∪ S.enum(v)
15 · · R.pop()
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Comparing SCC algorithms

Tarjan’s SCC algorithm [1972]
Worst case O(m + n)
On-the-fly
Inherently DFS

Variants (DFS-based):
double DFS (transposed graph)
Kosaraju‘78, Sharir‘81
path-based SCC algorithms
Purdom‘70, Munro‘71, Dijkstra‘76

Forward-Backward algorithm
Worst case O(n(m + n))
Requires predecessors
BFS is sufficient

Variants (BFS-based):
original FB algorithm
Fleischer, Hendrickson, Pinar [‘00]
R-OBF: trims trivial SCCs
Barnat, Chaloupka, vdPol [‘09]

FB is easier to parallellize, but harder to use and less efficient!
Complexity theory of parallel graph algorithms:

Reif (1985): Depth-First Search is inherently sequential (P-complete)
Amato (1993): SSSP in O(log2(n)) time on O(n2.376) processors
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BFS is sufficient

Variants (BFS-based):
original FB algorithm
Fleischer, Hendrickson, Pinar [‘00]
R-OBF: trims trivial SCCs
Barnat, Chaloupka, vdPol [‘09]

FB is easier to parallellize, but harder to use and less efficient!

Complexity theory of parallel graph algorithms:

Reif (1985): Depth-First Search is inherently sequential (P-complete)
Amato (1993): SSSP in O(log2(n)) time on O(n2.376) processors
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Intermezzo: Parallel Random Nested-DFS (ATVA 2011, 2012)

Inspiration: Swarmed Verification (Holzmann, Spin) for bug finding

Nested Depth-First Search for LTL model checking

Every worker performs its own NDFS in a randomized direction
Parallel search speeds up finding bugs only: duplicate work
EP 2011: Share much, repair violations of DFS order: sequential work
LvdP 2011: Share less, avoid violations of DFS order: some locking

Jaco van de Pol, Aarhus+Twente Concurrency for Model Checking 13 / 40



Intermezzo: Parallel Random Nested-DFS (ATVA 2011, 2012)

Inspiration: Swarmed Verification (Holzmann, Spin) for bug finding

Nested Depth-First Search for LTL model checking
Every worker performs its own NDFS in a randomized direction
Parallel search speeds up finding bugs only: duplicate work

EP 2011: Share much, repair violations of DFS order: sequential work
LvdP 2011: Share less, avoid violations of DFS order: some locking

Jaco van de Pol, Aarhus+Twente Concurrency for Model Checking 13 / 40



Intermezzo: Parallel Random Nested-DFS (ATVA 2011, 2012)

Inspiration: Swarmed Verification (Holzmann, Spin) for bug finding

Nested Depth-First Search for LTL model checking
Every worker performs its own NDFS in a randomized direction
Parallel search speeds up finding bugs only: duplicate work
EP 2011: Share much, repair violations of DFS order: sequential work
LvdP 2011: Share less, avoid violations of DFS order: some locking

Jaco van de Pol, Aarhus+Twente Concurrency for Model Checking 13 / 40



Parallel Random DFS for SCCs

Parallel DFS + random successor order + sharing information on SCCs

a

b c d

e

f g h

What happens if two workers start working on the same SCC?

G. Lowe (TACAS’14): suspend and sequential repair procedure
E. Renault et al. (TACAS’15): share complete SCCs only
V. Bloemen et al. (PPoPP’16): share partial SCCs as well
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Handling Small and Large SCCs Sequentially

Small SCCs Large SCCs

Parallelizes well No performance gain

a

b

c

d

e

f

g h

j

k l

i

a

b

c

d

e

f

g h

j

k l

i

Bottom line: we cannot afford to handle single SCCs sequentially
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Speedup in practice
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UF-SCC: Communicate partially found SCCs [Bloemen]

a b c

d

e f

Blue worker happens to visit a→ b → c → d
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UF-SCC: Communicate partially found SCCs [Bloemen]

a b c

d

e f

Blue worker detects and unites partial SCC {a, b, c, d}
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a b c

d
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UF-SCC: Communicate partially found SCCs [Bloemen]

a b c

d

e f

Red worker detects and unites partial SCC {e, f }
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UF-SCC: Communicate partially found SCCs [Bloemen]

a b c

d

e f

Red worker continues exploration f → c
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UF-SCC: Communicate partially found SCCs [Bloemen]

a b c

d

e f

But how does Red worker know that it visited a state “equivalent” to c?
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Union-Find with a worker set

Store a bit-set of worker IDs in the union-find roots

a

b c

d

e f

{b} {r} =⇒
a

b c d

e f

{b,r}

{r}
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Union-Find with a worker set

Check if the partial SCC of the successor has been visited before

a b c

d

e f

b

a c d

e

f

{r,b} {b} {b} {r}

{r,b} {r}

But how do we know when the SCC is complete?
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a b c
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e f
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Distinguish fully explored states

Track which states of the SCC still have to be explored
An SCC is complete if all its states have been fully explored

Evenly distribute the remaining work
Otherwise one worker may end up doing all the work

{r,b} {b} {b} {r}

{r,b} {r}
a b c

d

e f

?

?

?
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Cyclic list of BUSY states

Keep track of the TODO list of BUSY states
BUSY: There may be some unexplored successors from this state
DONE: This state has been fully explored by some worker
Workers can concurrently pick states from the cyclic list

busy

done

Jaco van de Pol, Aarhus+Twente Concurrency for Model Checking 21 / 40



List operations
Merge lists (Union) Remove element

a

b

c

e

f

g

⇓

a

b

c

e

f

g

a b c

a b c

=⇒
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Algorithm: code for worker p
Uses local stacks Rp (push, pop, top)
and shared disjoint-set S (union, find, claim, equal, cyclic list)

1 procedure UFSCCp(v)
2 · S.claim(v,p) // Add p to workers, v to cyclic list
3 · Rp.push(v)
4 · while v’ := S.PickFromList(v)
5 · · for each w ∈ randomize(next_state(v’))
6 · · ·
7 · · ·
8 · · ·
9 · · ·

10 · · ·
11 · ·
12 · ·
13 · · S.RemoveFromList(v’)
14 · if v = Rp.top() then report Rp.pop() // report the SCC
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4 · while v’ := S.PickFromList(v)
5 · · for each w ∈ randomize(next_state(v’))
6 · · · if w ∈ DEAD // ignore completed SCC
7 · · · · then continue
8 · · · else if p /∈ S.find(w) // state yet unseen by p
9 · · · · then UFSCCp(w)

10 · · · else
11 · · · · while ¬S.equal(v,w) // merge states on cycle
12 · · · · · S.union(Rp.pop(), Rp.top())
13 · · S.RemoveFromList(v’)
14 · if v = Rp.top() then report Rp.pop() // report the SCC
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Time Complexity and Speed-Up

n: number of states (nodes), m: number of transitions (edges)
α(n): inverse of Ackermann function (amortized complexity of UF)
p: number of workers

In the worst case, all workers visit the whole graph in lockstep, so total
amount of work is O((m + n).α(n).p): linear-time, but no speed-up
Model checking graphs are “broad”, so workers spread out evenly.
Observed wall clock: O((m + n).α(n)/p): linear-time and linear speed-up

Can we guarantee even more? Maybe!
S.V. Jayanti, R.E. Tarjan, E. Boix-Adserà [PODC’19]
Randomized Concurrent Set Union and Generalized Wake-Up

reports the first concurrent union-find algorithm with a total work
complexity that grows sublinear in p, the number of processes.
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Speedup graphs of selected BEEM models
Tarjan Renault Bloemen
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Overview

1 Introduction

2 Strongly Connected Components
A simple parallel SCC algorithm
Dijkstra’s sequential SCC algorithm
A parallel DFS algorithm for SCCs

3 Multicore Model Checking
Explicit-state LTL model checking
Symbolic model checking
LTSmin: high-performance model checker

4 Conclusion
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Recall: Automata-based LTL model checking

ModelM LTL formula ϕ

State space
generation

Model
automaton AM

Negated formula ¬ϕ

LTL to Büchi

Negated formula
automaton A¬ϕ

Synch. product
AM ⊗A¬ϕ

Emptiness check

L(AM ⊗A¬ϕ)
?
= ∅

M |= ϕ Counterexample

BA
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Recall: Automata-based LTL model checking

ModelM LTL formula ϕ

State space
generation

Model
automaton AM

Negated formula ¬ϕ

LTL to Büchi

Negated formula
automaton A¬ϕ

Synch. product
AM ⊗A¬ϕ

Emptiness check

L(AM ⊗A¬ϕ)
?
= ∅

M |= ϕ Counterexample

BA
TGBA

Rabin?
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UFSCC for LTL Model Checking with Büchi Automata

LTL model checking reduces to the following graph problem:
Find a reachable accepting SCC in a Büchi-automaton

a b c

d e f

Blue worker explores a→ b → e → d
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UFSCC for LTL Model Checking with Büchi Automata

LTL model checking reduces to the following graph problem:
Find a reachable accepting SCC in a Büchi-automaton

a b c

d e f

Blue worker detects and shares partial SCC {b, d , e}
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UFSCC for LTL Model Checking with Büchi Automata
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UFSCC for LTL Model Checking with Büchi Automata

LTL model checking reduces to the following graph problem:
Find a reachable accepting SCC in a Büchi-automaton

a b c

d e f

Accepting cycle has been found, while no single worker traversed it!
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Accepting Cycle for TGBA

Transition-based Generalized Büchi Automata

0 1

2 3

0

1

Inf(0) ∧ Inf(1)

Advantage: TGBA are more concise and natural for LTL

Store all encountered accepting marks at the UF-root
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Accepting Cycle for Generalized Rabin Automata

0 1

2 3

0

1

2

Fin(0) ∧ Inf(1) ∧ Inf(2)

[Bloemen, Duret-Lutz, vdPol, SPIN 2017]
Can handle all Rabin conditions sequentially or in parallel

Adapt the UF-SCC procedure by postponing “fin”–labels
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Binary Decision Diagrams

Concise, canonical, representation for Boolean functions
Used in Symbolic Model Checking to represent sets of states
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Apply Operator on Binary Decision Diagrams

Towards Multi-Core BDD [Tom van Dijk]
Apply( ⊗, leaf1, leaf2) = leaf1 ⊗ leaf2

Apply( ⊗,B1,B2 ) =
let z = min(topvar(B1), topvar(B2))

L = Apply( ⊗,B1|z=0,B2|z=0)
H = Apply( ⊗,B1|z=1,B2|z=1)
R = MakeUniqueNode(z , L, H)

in R

Two recursive calls

MakeUniqueNode uses concurrent shared hashtable
Caching uses concurrent lossy hashtable
Spawn/Sync requires a fine-grained task scheduler (deque)
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in R

Two recursive calls
MakeUniqueNode uses concurrent shared hashtable

Caching uses concurrent lossy hashtable
Spawn/Sync requires a fine-grained task scheduler (deque)
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Sylvan Framework for Multi-core Decision Diagrams

Features of Sylvan [https://github.com/utwente-fmt/sylvan]

Support: BDD, Multiway/Multiterminal DDs, ZDDs, . . .
Programmable interface (C, C++, Python)
Ported to RDMA: Multicore/Distributed [Wytse Oortwijn, SPIN17]

Missing: dynamic variable reordering

Applications
Symbolic Reachability with BFS strategy and Saturation
Symbolic Bisimulation Reduction / CTMC lumping
Symbolic Parity Game Solving (Zielonka’s algorithm)
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LTSmin: high-performance model checker
LTSmin and its language-independent interface PINS
https://github.com/utwente-fmt/ltsmin

Parallel LTL-X model checking with partial-order reduction
Symbolic reachability with saturation and bisimulation reduction
Distributed reachability and bisimulation reduction
Competition Awards: RERS 2012, 2013, 2016; MCC 2016 gold in LTL
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Conclusion

Concurrent Datastructures
hash-tables, lossy cache, union-find, deque
mostly lock-less, use CAS, NUMA-aware programming

Parallel Algorithms, in particular parallel DFS-based
Total amount of work: try to avoid duplicate work
Speedup bottlenecks: try to avoid sequential repair
Careful reconsider necessary invariants

Recent directions of interest
GPU algorithms and implementations
Parallel SAT/QBF solving
Parallel parameter synthesis (probability, time)
Parallel strategy synthesis for games
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Parallel SCC with UF and Cyclic List
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