
Concurrent Algorithms and Data Structures
for Model Checking

Jaco van de Pol

Alfons Laarman, Tom van Dijk, Vincent Bloemen

Aarhus University, Denmark

University of Twente, The Netherlands

CONCUR + FMICS, Aug 30, 2019

Jaco van de Pol, Aarhus+Twente Concurrency for Model Checking 1 / 40

Smart Parallel Algorithms for Model Checking

Model checking requires the exploration of very large, implicit graphs
These graphs are generated from specifications (models, programs)

Smart Algorithms: exponential gains in time/memory
Partial Order Reduction: only representative interleavings
Binary Decision Diagrams: concise representation with logic
Symmetry Reduction, Abstraction, . . .

Parallel Algorithms: at most linear speedup in # processors
Clusters of computers (distributed memory)
Multi-core processors (parallel algorithms, NUMA)
GPU (many-core, not considered here)

Required: parallelisation of smart algorithms!
Challenge: efficiency = time-optimal + linear speedup

Jaco van de Pol, Aarhus+Twente Concurrency for Model Checking 2 / 40

Smart Parallel Algorithms for Model Checking

Model checking requires the exploration of very large, implicit graphs
These graphs are generated from specifications (models, programs)

Smart Algorithms: exponential gains in time/memory
Partial Order Reduction: only representative interleavings
Binary Decision Diagrams: concise representation with logic
Symmetry Reduction, Abstraction, . . .

Parallel Algorithms: at most linear speedup in # processors
Clusters of computers (distributed memory)
Multi-core processors (parallel algorithms, NUMA)
GPU (many-core, not considered here)

Required: parallelisation of smart algorithms!
Challenge: efficiency = time-optimal + linear speedup

Jaco van de Pol, Aarhus+Twente Concurrency for Model Checking 2 / 40

Smart Parallel Algorithms for Model Checking

Model checking requires the exploration of very large, implicit graphs
These graphs are generated from specifications (models, programs)

Smart Algorithms: exponential gains in time/memory
Partial Order Reduction: only representative interleavings
Binary Decision Diagrams: concise representation with logic
Symmetry Reduction, Abstraction, . . .

Parallel Algorithms: at most linear speedup in # processors
Clusters of computers (distributed memory)
Multi-core processors (parallel algorithms, NUMA)
GPU (many-core, not considered here)

Required: parallelisation of smart algorithms!
Challenge: efficiency = time-optimal + linear speedup

Jaco van de Pol, Aarhus+Twente Concurrency for Model Checking 2 / 40

Smart Parallel Algorithms for Model Checking

Model checking requires the exploration of very large, implicit graphs
These graphs are generated from specifications (models, programs)

Smart Algorithms: exponential gains in time/memory
Partial Order Reduction: only representative interleavings
Binary Decision Diagrams: concise representation with logic
Symmetry Reduction, Abstraction, . . .

Parallel Algorithms: at most linear speedup in # processors
Clusters of computers (distributed memory)
Multi-core processors (parallel algorithms, NUMA)
GPU (many-core, not considered here)

Required: parallelisation of smart algorithms!

Challenge: efficiency = time-optimal + linear speedup

Jaco van de Pol, Aarhus+Twente Concurrency for Model Checking 2 / 40

Smart Parallel Algorithms for Model Checking

Model checking requires the exploration of very large, implicit graphs
These graphs are generated from specifications (models, programs)

Smart Algorithms: exponential gains in time/memory
Partial Order Reduction: only representative interleavings
Binary Decision Diagrams: concise representation with logic
Symmetry Reduction, Abstraction, . . .

Parallel Algorithms: at most linear speedup in # processors
Clusters of computers (distributed memory)
Multi-core processors (parallel algorithms, NUMA)
GPU (many-core, not considered here)

Required: parallelisation of smart algorithms!
Challenge: efficiency = time-optimal + linear speedup

Jaco van de Pol, Aarhus+Twente Concurrency for Model Checking 2 / 40

Opportunities and obstacles in parallel model checking

Distributed Model Checking
More memory is available (NoW = Network of Workstations)
Price: communication costs
Main limitation: latency and throughput of the network
Redesign algorithms (load balancing, latency hiding, speculation)

Multi-core Model Checking
State space is available in shared memory: efficient communication
Main limitation: memory bus contention, cache coherence, locking
Graphs: irregular memory access (hash tables, BDDs)
Computer architecture: from SMP to NUMA
Efficiency: lock-free (CAS, memory barriers), be cache-line aware

In both cases, thorough experimental evaluation is important

Jaco van de Pol, Aarhus+Twente Concurrency for Model Checking 3 / 40

Opportunities and obstacles in parallel model checking

Distributed Model Checking
More memory is available (NoW = Network of Workstations)
Price: communication costs
Main limitation: latency and throughput of the network
Redesign algorithms (load balancing, latency hiding, speculation)

Multi-core Model Checking
State space is available in shared memory: efficient communication
Main limitation: memory bus contention, cache coherence, locking
Graphs: irregular memory access (hash tables, BDDs)
Computer architecture: from SMP to NUMA
Efficiency: lock-free (CAS, memory barriers), be cache-line aware

In both cases, thorough experimental evaluation is important

Jaco van de Pol, Aarhus+Twente Concurrency for Model Checking 3 / 40

Opportunities and obstacles in parallel model checking

Distributed Model Checking
More memory is available (NoW = Network of Workstations)
Price: communication costs
Main limitation: latency and throughput of the network
Redesign algorithms (load balancing, latency hiding, speculation)

Multi-core Model Checking
State space is available in shared memory: efficient communication
Main limitation: memory bus contention, cache coherence, locking
Graphs: irregular memory access (hash tables, BDDs)
Computer architecture: from SMP to NUMA
Efficiency: lock-free (CAS, memory barriers), be cache-line aware

In both cases, thorough experimental evaluation is important
Jaco van de Pol, Aarhus+Twente Concurrency for Model Checking 3 / 40

History: successful PDMC workshop series (2002-2012)
1990 Kimura & Clarke, parallel algorithm for constructing BDDs (SMP)
1997 Stern & Dill, parallelizing the Murφ verifier (NoW, MPI)

2000 Heyman, Grumberg & Schuster, distributed symbolic model checking
2001 Barnat, Brim & Cerna, distributed LTL model checking (DiVinE)
2002 Behrman etal, distributed timed model checking (Uppaal)
2003 Blom, Lisser, Orzan, vdPol, Weber, distributed bisimulation (µCRL)
2004 Chung & Ciardo, saturation NoW (symbolic reachability for Petri nets)
2007 Barnat, Brim & Rockai, scalable multi-core LTL model checking
2007 Holzman & Bosnacki, multi-core model checking with SPIN
2008 Holzman, Joshi & Groce, swarmed verification with SPIN
2009 Ciardo, parallel symbolic reachability is difficult

Parallel model checking compromises on worst case performance
Challenge: scalable & efficient multi-core model checking

2011 Laarman & vdPol, Multi-core Nested DFS
2013 Van Dijk & vdPol, Scalable multi-core BDD algorithms
2016 Bloemen & vdPol, Multi-core DFS SCC algorithm

Jaco van de Pol, Aarhus+Twente Concurrency for Model Checking 4 / 40

History: successful PDMC workshop series (2002-2012)
1990 Kimura & Clarke, parallel algorithm for constructing BDDs (SMP)
1997 Stern & Dill, parallelizing the Murφ verifier (NoW, MPI)
2000 Heyman, Grumberg & Schuster, distributed symbolic model checking
2001 Barnat, Brim & Cerna, distributed LTL model checking (DiVinE)
2002 Behrman etal, distributed timed model checking (Uppaal)
2003 Blom, Lisser, Orzan, vdPol, Weber, distributed bisimulation (µCRL)
2004 Chung & Ciardo, saturation NoW (symbolic reachability for Petri nets)

2007 Barnat, Brim & Rockai, scalable multi-core LTL model checking
2007 Holzman & Bosnacki, multi-core model checking with SPIN
2008 Holzman, Joshi & Groce, swarmed verification with SPIN
2009 Ciardo, parallel symbolic reachability is difficult

Parallel model checking compromises on worst case performance
Challenge: scalable & efficient multi-core model checking

2011 Laarman & vdPol, Multi-core Nested DFS
2013 Van Dijk & vdPol, Scalable multi-core BDD algorithms
2016 Bloemen & vdPol, Multi-core DFS SCC algorithm

Jaco van de Pol, Aarhus+Twente Concurrency for Model Checking 4 / 40

History: successful PDMC workshop series (2002-2012)
1990 Kimura & Clarke, parallel algorithm for constructing BDDs (SMP)
1997 Stern & Dill, parallelizing the Murφ verifier (NoW, MPI)
2000 Heyman, Grumberg & Schuster, distributed symbolic model checking
2001 Barnat, Brim & Cerna, distributed LTL model checking (DiVinE)
2002 Behrman etal, distributed timed model checking (Uppaal)
2003 Blom, Lisser, Orzan, vdPol, Weber, distributed bisimulation (µCRL)
2004 Chung & Ciardo, saturation NoW (symbolic reachability for Petri nets)
2007 Barnat, Brim & Rockai, scalable multi-core LTL model checking
2007 Holzman & Bosnacki, multi-core model checking with SPIN
2008 Holzman, Joshi & Groce, swarmed verification with SPIN
2009 Ciardo, parallel symbolic reachability is difficult

Parallel model checking compromises on worst case performance
Challenge: scalable & efficient multi-core model checking

2011 Laarman & vdPol, Multi-core Nested DFS
2013 Van Dijk & vdPol, Scalable multi-core BDD algorithms
2016 Bloemen & vdPol, Multi-core DFS SCC algorithm

Jaco van de Pol, Aarhus+Twente Concurrency for Model Checking 4 / 40

History: successful PDMC workshop series (2002-2012)
1990 Kimura & Clarke, parallel algorithm for constructing BDDs (SMP)
1997 Stern & Dill, parallelizing the Murφ verifier (NoW, MPI)
2000 Heyman, Grumberg & Schuster, distributed symbolic model checking
2001 Barnat, Brim & Cerna, distributed LTL model checking (DiVinE)
2002 Behrman etal, distributed timed model checking (Uppaal)
2003 Blom, Lisser, Orzan, vdPol, Weber, distributed bisimulation (µCRL)
2004 Chung & Ciardo, saturation NoW (symbolic reachability for Petri nets)
2007 Barnat, Brim & Rockai, scalable multi-core LTL model checking
2007 Holzman & Bosnacki, multi-core model checking with SPIN
2008 Holzman, Joshi & Groce, swarmed verification with SPIN
2009 Ciardo, parallel symbolic reachability is difficult

Parallel model checking compromises on worst case performance
Challenge: scalable & efficient multi-core model checking

2011 Laarman & vdPol, Multi-core Nested DFS
2013 Van Dijk & vdPol, Scalable multi-core BDD algorithms
2016 Bloemen & vdPol, Multi-core DFS SCC algorithm

Jaco van de Pol, Aarhus+Twente Concurrency for Model Checking 4 / 40

History: successful PDMC workshop series (2002-2012)
1990 Kimura & Clarke, parallel algorithm for constructing BDDs (SMP)
1997 Stern & Dill, parallelizing the Murφ verifier (NoW, MPI)
2000 Heyman, Grumberg & Schuster, distributed symbolic model checking
2001 Barnat, Brim & Cerna, distributed LTL model checking (DiVinE)
2002 Behrman etal, distributed timed model checking (Uppaal)
2003 Blom, Lisser, Orzan, vdPol, Weber, distributed bisimulation (µCRL)
2004 Chung & Ciardo, saturation NoW (symbolic reachability for Petri nets)
2007 Barnat, Brim & Rockai, scalable multi-core LTL model checking
2007 Holzman & Bosnacki, multi-core model checking with SPIN
2008 Holzman, Joshi & Groce, swarmed verification with SPIN
2009 Ciardo, parallel symbolic reachability is difficult

Parallel model checking compromises on worst case performance
Challenge: scalable & efficient multi-core model checking

2011 Laarman & vdPol, Multi-core Nested DFS
2013 Van Dijk & vdPol, Scalable multi-core BDD algorithms
2016 Bloemen & vdPol, Multi-core DFS SCC algorithm

Jaco van de Pol, Aarhus+Twente Concurrency for Model Checking 4 / 40

3 PhD theses from University of Twente

Alfons Laarman: Parallel Nested Depth-First Search (2010-2014)
lock-free hashtable, state compression (make-over: Freark vd Berg)
parallel NDFS (now formally verified by Wytse Oortwijn)
compatible with partial-order reduction: LTL-X model checking

Tom van Dijk: Concurrent Decision Diagrams (2012-2016)
concurrent garbage collection, lossy cache, task scheduler
parallel symbolic reachability, bisimulation minimisation, saturation
heterogeneous distributed + multi-core version (Wytse Oortwijn)

Vincent Bloemen: Parallel Strongly Connected Components (2016-2019)
based on DFS and sharing info on partial SCCs
concurrent Union-Find structure + iterable cyclic list
LTL model checking with Büchi automata, Rabin automata, etc.

Jaco van de Pol, Aarhus+Twente Concurrency for Model Checking 5 / 40

3 PhD theses from University of Twente

Alfons Laarman: Parallel Nested Depth-First Search (2010-2014)
lock-free hashtable, state compression (make-over: Freark vd Berg)
parallel NDFS (now formally verified by Wytse Oortwijn)
compatible with partial-order reduction: LTL-X model checking

Tom van Dijk: Concurrent Decision Diagrams (2012-2016)
concurrent garbage collection, lossy cache, task scheduler
parallel symbolic reachability, bisimulation minimisation, saturation
heterogeneous distributed + multi-core version (Wytse Oortwijn)

Vincent Bloemen: Parallel Strongly Connected Components (2016-2019)
based on DFS and sharing info on partial SCCs
concurrent Union-Find structure + iterable cyclic list
LTL model checking with Büchi automata, Rabin automata, etc.

Jaco van de Pol, Aarhus+Twente Concurrency for Model Checking 5 / 40

3 PhD theses from University of Twente

Alfons Laarman: Parallel Nested Depth-First Search (2010-2014)
lock-free hashtable, state compression (make-over: Freark vd Berg)
parallel NDFS (now formally verified by Wytse Oortwijn)
compatible with partial-order reduction: LTL-X model checking

Tom van Dijk: Concurrent Decision Diagrams (2012-2016)
concurrent garbage collection, lossy cache, task scheduler
parallel symbolic reachability, bisimulation minimisation, saturation
heterogeneous distributed + multi-core version (Wytse Oortwijn)

Vincent Bloemen: Parallel Strongly Connected Components (2016-2019)
based on DFS and sharing info on partial SCCs
concurrent Union-Find structure + iterable cyclic list
LTL model checking with Büchi automata, Rabin automata, etc.

Jaco van de Pol, Aarhus+Twente Concurrency for Model Checking 5 / 40

3 PhD theses from University of Twente

Alfons Laarman: Parallel Nested Depth-First Search (2010-2014)
lock-free hashtable, state compression (make-over: Freark vd Berg)
parallel NDFS (now formally verified by Wytse Oortwijn)
compatible with partial-order reduction: LTL-X model checking

Tom van Dijk: Concurrent Decision Diagrams (2012-2016)
concurrent garbage collection, lossy cache, task scheduler
parallel symbolic reachability, bisimulation minimisation, saturation
heterogeneous distributed + multi-core version (Wytse Oortwijn)

Vincent Bloemen: Parallel Strongly Connected Components (2016-2019)
based on DFS and sharing info on partial SCCs
concurrent Union-Find structure + iterable cyclic list
LTL model checking with Büchi automata, Rabin automata, etc.

Jaco van de Pol, Aarhus+Twente Concurrency for Model Checking 5 / 40

Overview

1 Introduction

2 Strongly Connected Components
A simple parallel SCC algorithm
Dijkstra’s sequential SCC algorithm
A parallel DFS algorithm for SCCs

3 Multicore Model Checking
Explicit-state LTL model checking
Symbolic model checking
LTSmin: high-performance model checker

4 Conclusion

Jaco van de Pol, Aarhus+Twente Concurrency for Model Checking 6 / 40

Strongly Connected Component (SCC)

Setting: finite graph with directed edges
SCCs: maximal components of � ∩�

a b c

d e f g

h i j k

Applications: LTL model checking, fairness, evaluation of Markov Chains

Jaco van de Pol, Aarhus+Twente Concurrency for Model Checking 7 / 40

Strongly Connected Component (SCC)

Setting: finite graph with directed edges
SCCs: maximal components of � ∩�

a b c

d e f g

h i j k

Applications: LTL model checking, fairness, evaluation of Markov Chains

Jaco van de Pol, Aarhus+Twente Concurrency for Model Checking 7 / 40

Strongly Connected Component (SCC)

Setting: finite graph with directed edges
SCCs: maximal components of � ∩�

a b c

d e f g

h i j k

Applications: LTL model checking, fairness, evaluation of Markov Chains

Jaco van de Pol, Aarhus+Twente Concurrency for Model Checking 7 / 40

Forward-Backward (FB) parallel SCC Algorithm
1. Select a pivot node

a b c

d e f g

h i j k

Backward slice Forward slice

SCC

Remaining slices can be processed independently in parallel

Jaco van de Pol, Aarhus+Twente Concurrency for Model Checking 8 / 40

Forward-Backward (FB) parallel SCC Algorithm
2. Compute its forward reachable set (F)

a b c

d e f g

h i j k

Backward slice Forward slice

SCC

Remaining slices can be processed independently in parallel

Jaco van de Pol, Aarhus+Twente Concurrency for Model Checking 8 / 40

Forward-Backward (FB) parallel SCC Algorithm
3. Compute its backward reachable set (B)

a b c

d e f g

h i j k

Backward slice Forward slice

SCC

Remaining slices can be processed independently in parallel

Jaco van de Pol, Aarhus+Twente Concurrency for Model Checking 8 / 40

Forward-Backward (FB) parallel SCC Algorithm
4. The intersection F ∩ B is the SCC of the pivot

a b c

d e f g

h i j k

Backward slice Forward slice

SCC

Remaining slices can be processed independently in parallel

Jaco van de Pol, Aarhus+Twente Concurrency for Model Checking 8 / 40

Forward-Backward (FB) parallel SCC Algorithm
4. The intersection F ∩ B is the SCC of the pivot

a b c

d e f g

h i j k

Backward slice Forward slice

SCC

Remaining slices can be processed independently in parallel
Jaco van de Pol, Aarhus+Twente Concurrency for Model Checking 8 / 40

Finding SCCs on-the-fly (path-based algorithm)
For model checking, an on-the-fly SCC algorithm is preferable:

bug finding: early termination when a bug in the model is detected
portability: we restrict model access to a next-state function

d ?

?

NB: this is not yet necessarily a maximal SCC,
since its successors are not completely explored

Jaco van de Pol, Aarhus+Twente Concurrency for Model Checking 9 / 40

Finding SCCs on-the-fly (path-based algorithm)
For model checking, an on-the-fly SCC algorithm is preferable:

bug finding: early termination when a bug in the model is detected
portability: we restrict model access to a next-state function

?

d e ?

?

NB: this is not yet necessarily a maximal SCC,
since its successors are not completely explored

Jaco van de Pol, Aarhus+Twente Concurrency for Model Checking 9 / 40

Finding SCCs on-the-fly (path-based algorithm)
For model checking, an on-the-fly SCC algorithm is preferable:

bug finding: early termination when a bug in the model is detected
portability: we restrict model access to a next-state function

?

d e f ?

? ?

NB: this is not yet necessarily a maximal SCC,
since its successors are not completely explored

Jaco van de Pol, Aarhus+Twente Concurrency for Model Checking 9 / 40

Finding SCCs on-the-fly (path-based algorithm)
For model checking, an on-the-fly SCC algorithm is preferable:

bug finding: early termination when a bug in the model is detected
portability: we restrict model access to a next-state function

? ?

d e f g

? ? ?

NB: this is not yet necessarily a maximal SCC,
since its successors are not completely explored

Jaco van de Pol, Aarhus+Twente Concurrency for Model Checking 9 / 40

Finding SCCs on-the-fly (path-based algorithm)
For model checking, an on-the-fly SCC algorithm is preferable:

bug finding: early termination when a bug in the model is detected
portability: we restrict model access to a next-state function

? ?

d e f g

? ? k

NB: this is not yet necessarily a maximal SCC,
since its successors are not completely explored

Jaco van de Pol, Aarhus+Twente Concurrency for Model Checking 9 / 40

Finding SCCs on-the-fly (path-based algorithm)
For model checking, an on-the-fly SCC algorithm is preferable:

bug finding: early termination when a bug in the model is detected
portability: we restrict model access to a next-state function

? ?

d e f g

? ? k

NB: this is not yet necessarily a maximal SCC,
since its successors are not completely explored

Jaco van de Pol, Aarhus+Twente Concurrency for Model Checking 9 / 40

Finding SCCs on-the-fly (path-based algorithm)
For model checking, an on-the-fly SCC algorithm is preferable:

bug finding: early termination when a bug in the model is detected
portability: we restrict model access to a next-state function

? ?

d e f g

? ? k

NB: this is not yet necessarily a maximal SCC,
since its successors are not completely explored

Jaco van de Pol, Aarhus+Twente Concurrency for Model Checking 9 / 40

Maintain (partial) SCCs in a Union-Find data structure
Union-Find structure [Tarjan, van Leeuwen, J ACM 1984]:

supports disjoint subsets, which can be merged
basic functions: Union and Find (unique representative)

a

b c

d

e

f g

Reversed forest, nodes direct towards their representative root
Jaco van de Pol, Aarhus+Twente Concurrency for Model Checking 10 / 40

Maintain (partial) SCCs in a Union-Find data structure
Union-Find structure [Tarjan, van Leeuwen, J ACM 1984]:

supports disjoint subsets, which can be merged
basic functions: Union and Find (unique representative)

a

b c

d

e

f g

Find(d): recursively searches the parent edges to find the root
Jaco van de Pol, Aarhus+Twente Concurrency for Model Checking 10 / 40

Maintain (partial) SCCs in a Union-Find data structure
Union-Find structure [Tarjan, van Leeuwen, J ACM 1984]:

supports disjoint subsets, which can be merged
basic functions: Union and Find (unique representative)

a

b c

d

e

f g

Unite(f,d): Find the roots of f and d,
Jaco van de Pol, Aarhus+Twente Concurrency for Model Checking 10 / 40

Maintain (partial) SCCs in a Union-Find data structure
Union-Find structure [Tarjan, van Leeuwen, J ACM 1984]:

supports disjoint subsets, which can be merged
basic functions: Union and Find (unique representative)

a

b c

d

e

f g

Unite(f,d): Find the roots of f and d, and update one of them
Jaco van de Pol, Aarhus+Twente Concurrency for Model Checking 10 / 40

Dijkstra’s SCC Algorithm [1976]

v

...

...

w

...

...

R

Uses stack R (push, pop, top) and disjoint-set S (union, find, enum)
Also maintains sets Visited and Explored, initially ∅

1 procedure SCC(v)
2 · Visited := Visited ∪ {v}
3 · R.push(v)
4 · for each w ∈ next_state(v)
5

· · if w ∈ Explored · · · · · · · // complete SCC
6 · · · then continue
7 · · else if w /∈ Visited· · · · · // unseen state
8 · · · then SCC(w)
9 · · else · · · · · · · · · · · · // cycle found

10 · · · while S.find(v) 6= S.find(w) do
11 · · · · S.union(R.pop(), R.top())
12 · if v = R.top() then · · · · · // completed SCC
13 · · report SCC S.enum(v)
14 · · Explored := Explored ∪ S.enum(v)
15 · · R.pop()

Jaco van de Pol, Aarhus+Twente Concurrency for Model Checking 11 / 40

Dijkstra’s SCC Algorithm [1976]

v

...

...

w

...

...

R

Uses stack R (push, pop, top) and disjoint-set S (union, find, enum)
Also maintains sets Visited and Explored, initially ∅

1 procedure SCC(v)
2 · Visited := Visited ∪ {v}
3 · R.push(v)
4 · for each w ∈ next_state(v)
5 · · if w ∈ Explored · · · · · · · // complete SCC
6 · · · then continue
7 · · else if w /∈ Visited· · · · · // unseen state
8 · · · then SCC(w)
9 · · else · · · · · · · · · · · · // cycle found

10

· · · while S.find(v) 6= S.find(w) do
11 · · · · S.union(R.pop(), R.top())
12 · if v = R.top() then · · · · · // completed SCC
13 · · report SCC S.enum(v)
14 · · Explored := Explored ∪ S.enum(v)
15 · · R.pop()

Jaco van de Pol, Aarhus+Twente Concurrency for Model Checking 11 / 40

Dijkstra’s SCC Algorithm [1976]

v

...

...

w

...

...

R

Uses stack R (push, pop, top) and disjoint-set S (union, find, enum)
Also maintains sets Visited and Explored, initially ∅

1 procedure SCC(v)
2 · Visited := Visited ∪ {v}
3 · R.push(v)
4 · for each w ∈ next_state(v)
5 · · if w ∈ Explored · · · · · · · // complete SCC
6 · · · then continue
7 · · else if w /∈ Visited· · · · · // unseen state
8 · · · then SCC(w)
9 · · else · · · · · · · · · · · · // cycle found

10 · · · while S.find(v) 6= S.find(w) do
11 · · · · S.union(R.pop(), R.top())
12

· if v = R.top() then · · · · · // completed SCC
13 · · report SCC S.enum(v)
14 · · Explored := Explored ∪ S.enum(v)
15 · · R.pop()

Jaco van de Pol, Aarhus+Twente Concurrency for Model Checking 11 / 40

Dijkstra’s SCC Algorithm [1976]

v

...

...

w

...

...

R

Uses stack R (push, pop, top) and disjoint-set S (union, find, enum)
Also maintains sets Visited and Explored, initially ∅

1 procedure SCC(v)
2 · Visited := Visited ∪ {v}
3 · R.push(v)
4 · for each w ∈ next_state(v)
5 · · if w ∈ Explored · · · · · · · // complete SCC
6 · · · then continue
7 · · else if w /∈ Visited· · · · · // unseen state
8 · · · then SCC(w)
9 · · else · · · · · · · · · · · · // cycle found

10 · · · while S.find(v) 6= S.find(w) do
11 · · · · S.union(R.pop(), R.top())
12 · if v = R.top() then · · · · · // completed SCC
13 · · report SCC S.enum(v)
14 · · Explored := Explored ∪ S.enum(v)
15 · · R.pop()

Jaco van de Pol, Aarhus+Twente Concurrency for Model Checking 11 / 40

Comparing SCC algorithms

Tarjan’s SCC algorithm [1972]
Worst case O(m + n)
On-the-fly
Inherently DFS

Variants (DFS-based):
double DFS (transposed graph)
Kosaraju‘78, Sharir‘81
path-based SCC algorithms
Purdom‘70, Munro‘71, Dijkstra‘76

Forward-Backward algorithm
Worst case O(n(m + n))
Requires predecessors
BFS is sufficient

Variants (BFS-based):
original FB algorithm
Fleischer, Hendrickson, Pinar [‘00]
R-OBF: trims trivial SCCs
Barnat, Chaloupka, vdPol [‘09]

FB is easier to parallellize, but harder to use and less efficient!
Complexity theory of parallel graph algorithms:

Reif (1985): Depth-First Search is inherently sequential (P-complete)
Amato (1993): SSSP in O(log2(n)) time on O(n2.376) processors

Jaco van de Pol, Aarhus+Twente Concurrency for Model Checking 12 / 40

Comparing SCC algorithms

Tarjan’s SCC algorithm [1972]
Worst case O(m + n)
On-the-fly
Inherently DFS

Variants (DFS-based):
double DFS (transposed graph)
Kosaraju‘78, Sharir‘81
path-based SCC algorithms
Purdom‘70, Munro‘71, Dijkstra‘76

Forward-Backward algorithm
Worst case O(n(m + n))
Requires predecessors
BFS is sufficient

Variants (BFS-based):
original FB algorithm
Fleischer, Hendrickson, Pinar [‘00]
R-OBF: trims trivial SCCs
Barnat, Chaloupka, vdPol [‘09]

FB is easier to parallellize, but harder to use and less efficient!
Complexity theory of parallel graph algorithms:

Reif (1985): Depth-First Search is inherently sequential (P-complete)
Amato (1993): SSSP in O(log2(n)) time on O(n2.376) processors

Jaco van de Pol, Aarhus+Twente Concurrency for Model Checking 12 / 40

Comparing SCC algorithms

Tarjan’s SCC algorithm [1972]
Worst case O(m + n)
On-the-fly
Inherently DFS

Variants (DFS-based):
double DFS (transposed graph)
Kosaraju‘78, Sharir‘81
path-based SCC algorithms
Purdom‘70, Munro‘71, Dijkstra‘76

Forward-Backward algorithm
Worst case O(n(m + n))
Requires predecessors
BFS is sufficient

Variants (BFS-based):
original FB algorithm
Fleischer, Hendrickson, Pinar [‘00]
R-OBF: trims trivial SCCs
Barnat, Chaloupka, vdPol [‘09]

FB is easier to parallellize, but harder to use and less efficient!

Complexity theory of parallel graph algorithms:

Reif (1985): Depth-First Search is inherently sequential (P-complete)
Amato (1993): SSSP in O(log2(n)) time on O(n2.376) processors

Jaco van de Pol, Aarhus+Twente Concurrency for Model Checking 12 / 40

Comparing SCC algorithms

Tarjan’s SCC algorithm [1972]
Worst case O(m + n)
On-the-fly
Inherently DFS

Variants (DFS-based):
double DFS (transposed graph)
Kosaraju‘78, Sharir‘81
path-based SCC algorithms
Purdom‘70, Munro‘71, Dijkstra‘76

Forward-Backward algorithm
Worst case O(n(m + n))
Requires predecessors
BFS is sufficient

Variants (BFS-based):
original FB algorithm
Fleischer, Hendrickson, Pinar [‘00]
R-OBF: trims trivial SCCs
Barnat, Chaloupka, vdPol [‘09]

FB is easier to parallellize, but harder to use and less efficient!
Complexity theory of parallel graph algorithms:

Reif (1985): Depth-First Search is inherently sequential (P-complete)
Amato (1993): SSSP in O(log2(n)) time on O(n2.376) processors

Jaco van de Pol, Aarhus+Twente Concurrency for Model Checking 12 / 40

Intermezzo: Parallel Random Nested-DFS (ATVA 2011, 2012)

Inspiration: Swarmed Verification (Holzmann, Spin) for bug finding

Nested Depth-First Search for LTL model checking

Every worker performs its own NDFS in a randomized direction
Parallel search speeds up finding bugs only: duplicate work
EP 2011: Share much, repair violations of DFS order: sequential work
LvdP 2011: Share less, avoid violations of DFS order: some locking

Jaco van de Pol, Aarhus+Twente Concurrency for Model Checking 13 / 40

Intermezzo: Parallel Random Nested-DFS (ATVA 2011, 2012)

Inspiration: Swarmed Verification (Holzmann, Spin) for bug finding

Nested Depth-First Search for LTL model checking
Every worker performs its own NDFS in a randomized direction
Parallel search speeds up finding bugs only: duplicate work

EP 2011: Share much, repair violations of DFS order: sequential work
LvdP 2011: Share less, avoid violations of DFS order: some locking

Jaco van de Pol, Aarhus+Twente Concurrency for Model Checking 13 / 40

Intermezzo: Parallel Random Nested-DFS (ATVA 2011, 2012)

Inspiration: Swarmed Verification (Holzmann, Spin) for bug finding

Nested Depth-First Search for LTL model checking
Every worker performs its own NDFS in a randomized direction
Parallel search speeds up finding bugs only: duplicate work
EP 2011: Share much, repair violations of DFS order: sequential work
LvdP 2011: Share less, avoid violations of DFS order: some locking

Jaco van de Pol, Aarhus+Twente Concurrency for Model Checking 13 / 40

Parallel Random DFS for SCCs

Parallel DFS + random successor order + sharing information on SCCs

a

b c d

e

f g h

What happens if two workers start working on the same SCC?

G. Lowe (TACAS’14): suspend and sequential repair procedure
E. Renault et al. (TACAS’15): share complete SCCs only
V. Bloemen et al. (PPoPP’16): share partial SCCs as well

Jaco van de Pol, Aarhus+Twente Concurrency for Model Checking 14 / 40

Parallel Random DFS for SCCs

Parallel DFS + random successor order + sharing information on SCCs

a

b c d

e

f g h

What happens if two workers start working on the same SCC?
G. Lowe (TACAS’14): suspend and sequential repair procedure
E. Renault et al. (TACAS’15): share complete SCCs only
V. Bloemen et al. (PPoPP’16): share partial SCCs as well

Jaco van de Pol, Aarhus+Twente Concurrency for Model Checking 14 / 40

Handling Small and Large SCCs Sequentially

Small SCCs Large SCCs

Parallelizes well No performance gain

a

b

c

d

e

f

g h

j

k l

i

a

b

c

d

e

f

g h

j

k l

i

Bottom line: we cannot afford to handle single SCCs sequentially

Jaco van de Pol, Aarhus+Twente Concurrency for Model Checking 15 / 40

Speedup in practice

1 2 4 8 16 32 64
0.5

1

2

4

8

16

32

64

Number of workers

S
p
ee
d
u
p
vs

T
ar
ja
n

Small SCCs

1 2 4 8 16 32 64
0.5

1

2

4

8

16

32

64

Number of workers

a Large SCC

Tarjan

Jaco van de Pol, Aarhus+Twente Concurrency for Model Checking 16 / 40

Speedup in practice

1 2 4 8 16 32 64
0.5

1

2

4

8

16

32

64

Number of workers

S
p
ee
d
u
p
vs

T
ar
ja
n

Small SCCs

1 2 4 8 16 32 64
0.5

1

2

4

8

16

32

64

Number of workers

a Large SCC

Tarjan Renault

Jaco van de Pol, Aarhus+Twente Concurrency for Model Checking 16 / 40

Speedup in practice

1 2 4 8 16 32 64
0.5

1

2

4

8

16

32

64

Number of workers

S
p
ee
d
u
p
vs

T
ar
ja
n

Small SCCs

1 2 4 8 16 32 64
0.5

1

2

4

8

16

32

64

Number of workers

a Large SCC

Tarjan Renault Bloemen

Jaco van de Pol, Aarhus+Twente Concurrency for Model Checking 16 / 40

UF-SCC: Communicate partially found SCCs [Bloemen]

a b c

d

e f

Blue worker happens to visit a→ b → c → d

Jaco van de Pol, Aarhus+Twente Concurrency for Model Checking 17 / 40

UF-SCC: Communicate partially found SCCs [Bloemen]

a b c

d

e f

Blue worker happens to visit a→ b → c → d

Jaco van de Pol, Aarhus+Twente Concurrency for Model Checking 17 / 40

UF-SCC: Communicate partially found SCCs [Bloemen]

a b c

d

e f

Blue worker happens to visit a→ b → c → d

Jaco van de Pol, Aarhus+Twente Concurrency for Model Checking 17 / 40

UF-SCC: Communicate partially found SCCs [Bloemen]

a b c

d

e f

Blue worker happens to visit a→ b → c → d

Jaco van de Pol, Aarhus+Twente Concurrency for Model Checking 17 / 40

UF-SCC: Communicate partially found SCCs [Bloemen]

a b c

d

e f

Blue worker detects and unites partial SCC {a, b, c, d}

Jaco van de Pol, Aarhus+Twente Concurrency for Model Checking 17 / 40

UF-SCC: Communicate partially found SCCs [Bloemen]

a b c

d

e f

Red worker happens to visit a→ e → f

Jaco van de Pol, Aarhus+Twente Concurrency for Model Checking 17 / 40

UF-SCC: Communicate partially found SCCs [Bloemen]

a b c

d

e f

Red worker happens to visit a→ e → f

Jaco van de Pol, Aarhus+Twente Concurrency for Model Checking 17 / 40

UF-SCC: Communicate partially found SCCs [Bloemen]

a b c

d

e f

Red worker detects and unites partial SCC {e, f }

Jaco van de Pol, Aarhus+Twente Concurrency for Model Checking 17 / 40

UF-SCC: Communicate partially found SCCs [Bloemen]

a b c

d

e f

Red worker continues exploration f → c

Jaco van de Pol, Aarhus+Twente Concurrency for Model Checking 17 / 40

UF-SCC: Communicate partially found SCCs [Bloemen]

a b c

d

e f

But how does Red worker know that it visited a state “equivalent” to c?

Jaco van de Pol, Aarhus+Twente Concurrency for Model Checking 17 / 40

Union-Find with a worker set

Store a bit-set of worker IDs in the union-find roots

a

b c

d

e f

{b} {r} =⇒
a

b c d

e f

{b,r}

{r}

Jaco van de Pol, Aarhus+Twente Concurrency for Model Checking 18 / 40

Union-Find with a worker set

Check if the partial SCC of the successor has been visited before

a b c

d

e f

b

a c d

e

f

{r,b} {b} {b} {r}

{r,b} {r}

But how do we know when the SCC is complete?

Jaco van de Pol, Aarhus+Twente Concurrency for Model Checking 19 / 40

Union-Find with a worker set

Check if the partial SCC of the successor has been visited before

a b c

d

e f

b

a c d

e

f

{r,b} {b} {b} {r}

{r,b} {r}

But how do we know when the SCC is complete?

Jaco van de Pol, Aarhus+Twente Concurrency for Model Checking 19 / 40

Union-Find with a worker set

Check if the partial SCC of the successor has been visited before

a b c

d

e f

b

a c d

e

f

{r,b} {b} {b} {r}

{r,b} {r}

But how do we know when the SCC is complete?

Jaco van de Pol, Aarhus+Twente Concurrency for Model Checking 19 / 40

Distinguish fully explored states

Track which states of the SCC still have to be explored
An SCC is complete if all its states have been fully explored

Evenly distribute the remaining work
Otherwise one worker may end up doing all the work

{r,b} {b} {b} {r}

{r,b} {r}
a b c

d

e f

?

?

?

Jaco van de Pol, Aarhus+Twente Concurrency for Model Checking 20 / 40

Cyclic list of BUSY states

Keep track of the TODO list of BUSY states
BUSY: There may be some unexplored successors from this state
DONE: This state has been fully explored by some worker
Workers can concurrently pick states from the cyclic list

busy

done

Jaco van de Pol, Aarhus+Twente Concurrency for Model Checking 21 / 40

List operations
Merge lists (Union) Remove element

a

b

c

e

f

g

⇓

a

b

c

e

f

g

a b c

a b c

=⇒

Jaco van de Pol, Aarhus+Twente Concurrency for Model Checking 22 / 40

List operations
Merge lists (Union) Remove element

a

b

c

e

f

g

⇓

a

b

c

e

f

g

a b c

a b c

=⇒

Jaco van de Pol, Aarhus+Twente Concurrency for Model Checking 22 / 40

Algorithm: code for worker p
Uses local stacks Rp (push, pop, top)
and shared disjoint-set S (union, find, claim, equal, cyclic list)

1 procedure UFSCCp(v)
2 · S.claim(v,p) // Add p to workers, v to cyclic list
3 · Rp.push(v)
4 · while v’ := S.PickFromList(v)
5 · · for each w ∈ randomize(next_state(v’))
6 · · ·
7 · · ·
8 · · ·
9 · · ·

10 · · ·
11 · ·
12 · ·
13 · · S.RemoveFromList(v’)
14 · if v = Rp.top() then report Rp.pop() // report the SCC

Jaco van de Pol, Aarhus+Twente Concurrency for Model Checking 23 / 40

Algorithm: code for worker p
Uses local stacks Rp (push, pop, top)
and shared disjoint-set S (union, find, claim, equal, cyclic list)

1 procedure UFSCCp(v)
2 · S.claim(v,p) // Add p to workers, v to cyclic list
3 · Rp.push(v)
4 · while v’ := S.PickFromList(v)
5 · · for each w ∈ randomize(next_state(v’))
6 · · · if w ∈ DEAD // ignore completed SCC
7 · · · · then continue
8 · · · else if p /∈ S.find(w) // state yet unseen by p
9 · · · · then UFSCCp(w)

10 · · · else
11 · · · · while ¬S.equal(v,w) // merge states on cycle
12 · · · · · S.union(Rp.pop(), Rp.top())
13 · · S.RemoveFromList(v’)
14 · if v = Rp.top() then report Rp.pop() // report the SCC

Jaco van de Pol, Aarhus+Twente Concurrency for Model Checking 23 / 40

Time Complexity and Speed-Up

n: number of states (nodes), m: number of transitions (edges)
α(n): inverse of Ackermann function (amortized complexity of UF)
p: number of workers

In the worst case, all workers visit the whole graph in lockstep, so total
amount of work is O((m + n).α(n).p): linear-time, but no speed-up
Model checking graphs are “broad”, so workers spread out evenly.
Observed wall clock: O((m + n).α(n)/p): linear-time and linear speed-up

Can we guarantee even more? Maybe!
S.V. Jayanti, R.E. Tarjan, E. Boix-Adserà [PODC’19]
Randomized Concurrent Set Union and Generalized Wake-Up

reports the first concurrent union-find algorithm with a total work
complexity that grows sublinear in p, the number of processes.

Jaco van de Pol, Aarhus+Twente Concurrency for Model Checking 24 / 40

Time Complexity and Speed-Up

n: number of states (nodes), m: number of transitions (edges)
α(n): inverse of Ackermann function (amortized complexity of UF)
p: number of workers

In the worst case, all workers visit the whole graph in lockstep, so total
amount of work is O((m + n).α(n).p): linear-time, but no speed-up
Model checking graphs are “broad”, so workers spread out evenly.
Observed wall clock: O((m + n).α(n)/p): linear-time and linear speed-up

Can we guarantee even more? Maybe!
S.V. Jayanti, R.E. Tarjan, E. Boix-Adserà [PODC’19]
Randomized Concurrent Set Union and Generalized Wake-Up

reports the first concurrent union-find algorithm with a total work
complexity that grows sublinear in p, the number of processes.

Jaco van de Pol, Aarhus+Twente Concurrency for Model Checking 24 / 40

Time Complexity and Speed-Up

n: number of states (nodes), m: number of transitions (edges)
α(n): inverse of Ackermann function (amortized complexity of UF)
p: number of workers

In the worst case, all workers visit the whole graph in lockstep, so total
amount of work is O((m + n).α(n).p): linear-time, but no speed-up
Model checking graphs are “broad”, so workers spread out evenly.
Observed wall clock: O((m + n).α(n)/p): linear-time and linear speed-up

Can we guarantee even more? Maybe!
S.V. Jayanti, R.E. Tarjan, E. Boix-Adserà [PODC’19]
Randomized Concurrent Set Union and Generalized Wake-Up

reports the first concurrent union-find algorithm with a total work
complexity that grows sublinear in p, the number of processes.

Jaco van de Pol, Aarhus+Twente Concurrency for Model Checking 24 / 40

Speedup graphs of selected BEEM models
Tarjan Renault Bloemen

1 2 4 8 16 32 64
0.5

1

2

4

8

16

32

64

S
p
ee
d
u
p
v
s
T
a
rj
a
n

leader-filters.7

1 2 4 8 16 32 64
0.5

1

2

4

8

16

32

64
bakery.6

1 2 4 8 16 32 64
0.5

1

2

4

8

16

32

64
cambridge.6

1 2 4 8 16 32 64
0.5

1

2

4

8

16

32

64

Number of workers

S
p
ee
d
u
p
v
s
T
a
rj
a
n

lup.3

1 2 4 8 16 32 64
0.5

1

2

4

8

16

32

64

Number of workers

resistance.1

1 2 4 8 16 32 64
0.5

1

2

4

8

16

32

64

Number of workers

sorter.3

C
o
n
si
st

en
t *
Complete *

W
ell D

o
cu
m
ented*Easyt

oR

eu
se
* *

Evaluated

*
Po
P
*

Ar
t ifact *

A
EC

P
P

Jaco van de Pol, Aarhus+Twente Concurrency for Model Checking 25 / 40

Speedup graphs of selected BEEM models
Tarjan Renault Bloemen

1 2 4 8 16 32 64
0.5

1

2

4

8

16

32

64

S
p
ee
d
u
p
v
s
T
a
rj
a
n

leader-filters.7

1 2 4 8 16 32 64
0.5

1

2

4

8

16

32

64
bakery.6

1 2 4 8 16 32 64
0.5

1

2

4

8

16

32

64
cambridge.6

1 2 4 8 16 32 64
0.5

1

2

4

8

16

32

64

Number of workers

S
p
ee
d
u
p
v
s
T
a
rj
a
n

lup.3

1 2 4 8 16 32 64
0.5

1

2

4

8

16

32

64

Number of workers

resistance.1

1 2 4 8 16 32 64
0.5

1

2

4

8

16

32

64

Number of workers

sorter.3

C
o
n
si
st

en
t *
Complete *

W
ell D

o
cu
m
ented*Easyt

oR

eu
se
* *

Evaluated

*
Po
P
*

Ar
t ifact *

A
EC

P
P

Jaco van de Pol, Aarhus+Twente Concurrency for Model Checking 25 / 40

Overview

1 Introduction

2 Strongly Connected Components
A simple parallel SCC algorithm
Dijkstra’s sequential SCC algorithm
A parallel DFS algorithm for SCCs

3 Multicore Model Checking
Explicit-state LTL model checking
Symbolic model checking
LTSmin: high-performance model checker

4 Conclusion

Jaco van de Pol, Aarhus+Twente Concurrency for Model Checking 26 / 40

Recall: Automata-based LTL model checking

ModelM LTL formula ϕ

State space
generation

Model
automaton AM

Negated formula ¬ϕ

LTL to Büchi

Negated formula
automaton A¬ϕ

Synch. product
AM ⊗A¬ϕ

Emptiness check

L(AM ⊗A¬ϕ)
?
= ∅

M |= ϕ Counterexample

BA

Jaco van de Pol, Aarhus+Twente Concurrency for Model Checking 27 / 40

Recall: Automata-based LTL model checking

ModelM LTL formula ϕ

State space
generation

Model
automaton AM

Negated formula ¬ϕ

LTL to Büchi

Negated formula
automaton A¬ϕ

Synch. product
AM ⊗A¬ϕ

Emptiness check

L(AM ⊗A¬ϕ)
?
= ∅

M |= ϕ Counterexample

BA
TGBA

Jaco van de Pol, Aarhus+Twente Concurrency for Model Checking 27 / 40

Recall: Automata-based LTL model checking

ModelM LTL formula ϕ

State space
generation

Model
automaton AM

Negated formula ¬ϕ

LTL to Büchi

Negated formula
automaton A¬ϕ

Synch. product
AM ⊗A¬ϕ

Emptiness check

L(AM ⊗A¬ϕ)
?
= ∅

M |= ϕ Counterexample

BA
TGBA

Rabin?

Jaco van de Pol, Aarhus+Twente Concurrency for Model Checking 27 / 40

UFSCC for LTL Model Checking with Büchi Automata

LTL model checking reduces to the following graph problem:
Find a reachable accepting SCC in a Büchi-automaton

a b c

d e f

Blue worker explores a→ b → e → d

Jaco van de Pol, Aarhus+Twente Concurrency for Model Checking 28 / 40

UFSCC for LTL Model Checking with Büchi Automata

LTL model checking reduces to the following graph problem:
Find a reachable accepting SCC in a Büchi-automaton

a b c

d e f

Blue worker explores a→ b → e → d

Jaco van de Pol, Aarhus+Twente Concurrency for Model Checking 28 / 40

UFSCC for LTL Model Checking with Büchi Automata

LTL model checking reduces to the following graph problem:
Find a reachable accepting SCC in a Büchi-automaton

a b c

d e f

Blue worker explores a→ b → e → d

Jaco van de Pol, Aarhus+Twente Concurrency for Model Checking 28 / 40

UFSCC for LTL Model Checking with Büchi Automata

LTL model checking reduces to the following graph problem:
Find a reachable accepting SCC in a Büchi-automaton

a b c

d e f

Blue worker explores a→ b → e → d

Jaco van de Pol, Aarhus+Twente Concurrency for Model Checking 28 / 40

UFSCC for LTL Model Checking with Büchi Automata

LTL model checking reduces to the following graph problem:
Find a reachable accepting SCC in a Büchi-automaton

a b c

d e f

Red worker explores a→ b → c

Jaco van de Pol, Aarhus+Twente Concurrency for Model Checking 28 / 40

UFSCC for LTL Model Checking with Büchi Automata

LTL model checking reduces to the following graph problem:
Find a reachable accepting SCC in a Büchi-automaton

a b c

d e f

Red worker explores a→ b → c

Jaco van de Pol, Aarhus+Twente Concurrency for Model Checking 28 / 40

UFSCC for LTL Model Checking with Büchi Automata

LTL model checking reduces to the following graph problem:
Find a reachable accepting SCC in a Büchi-automaton

a b c

d e f

Blue worker detects and shares partial SCC {b, d , e}

Jaco van de Pol, Aarhus+Twente Concurrency for Model Checking 28 / 40

UFSCC for LTL Model Checking with Büchi Automata

LTL model checking reduces to the following graph problem:
Find a reachable accepting SCC in a Büchi-automaton

a b c

d e f

Red worker detects complete, accepting SCC {b, c, d , e, f }

Jaco van de Pol, Aarhus+Twente Concurrency for Model Checking 28 / 40

UFSCC for LTL Model Checking with Büchi Automata

LTL model checking reduces to the following graph problem:
Find a reachable accepting SCC in a Büchi-automaton

a b c

d e f

Red worker detects complete, accepting SCC {b, c, d , e, f }

Jaco van de Pol, Aarhus+Twente Concurrency for Model Checking 28 / 40

UFSCC for LTL Model Checking with Büchi Automata

LTL model checking reduces to the following graph problem:
Find a reachable accepting SCC in a Büchi-automaton

a b c

d e f

Accepting cycle has been found, while no single worker traversed it!

Jaco van de Pol, Aarhus+Twente Concurrency for Model Checking 28 / 40

Accepting Cycle for TGBA

Transition-based Generalized Büchi Automata

0 1

2 3

0

1

Inf(0) ∧ Inf(1)

Advantage: TGBA are more concise and natural for LTL

Store all encountered accepting marks at the UF-root

Jaco van de Pol, Aarhus+Twente Concurrency for Model Checking 29 / 40

Accepting Cycle for TGBA

Transition-based Generalized Büchi Automata

0 1

2 3

0

1

Inf(0) ∧ Inf(1)

Advantage: TGBA are more concise and natural for LTL

Store all encountered accepting marks at the UF-root

Jaco van de Pol, Aarhus+Twente Concurrency for Model Checking 29 / 40

Accepting Cycle for TGBA

Transition-based Generalized Büchi Automata

0 1

2 3

0

1

Inf(0) ∧ Inf(1)

Advantage: TGBA are more concise and natural for LTL
Store all encountered accepting marks at the UF-root

Jaco van de Pol, Aarhus+Twente Concurrency for Model Checking 29 / 40

Accepting Cycle for Generalized Rabin Automata

0 1

2 3

0

1

2

Fin(0) ∧ Inf(1) ∧ Inf(2)

[Bloemen, Duret-Lutz, vdPol, SPIN 2017]
Can handle all Rabin conditions sequentially or in parallel

Adapt the UF-SCC procedure by postponing “fin”–labels

Jaco van de Pol, Aarhus+Twente Concurrency for Model Checking 30 / 40

Accepting Cycle for Generalized Rabin Automata

0 1

2 3

0

1

2

Fin(0) ∧ Inf(1) ∧ Inf(2)

[Bloemen, Duret-Lutz, vdPol, SPIN 2017]
Can handle all Rabin conditions sequentially or in parallel

Adapt the UF-SCC procedure by postponing “fin”–labels

Jaco van de Pol, Aarhus+Twente Concurrency for Model Checking 30 / 40

Accepting Cycle for Generalized Rabin Automata

0 1

2 3

0

1

2

Fin(0) ∧ Inf(1) ∧ Inf(2)

[Bloemen, Duret-Lutz, vdPol, SPIN 2017]
Can handle all Rabin conditions sequentially or in parallel

Adapt the UF-SCC procedure by postponing “fin”–labels

Jaco van de Pol, Aarhus+Twente Concurrency for Model Checking 30 / 40

Accepting Cycle for Generalized Rabin Automata

0 1

2 3

0

1

2

Fin(0) ∧ Inf(1) ∧ Inf(2)

[Bloemen, Duret-Lutz, vdPol, SPIN 2017]
Can handle all Rabin conditions sequentially or in parallel
Adapt the UF-SCC procedure by postponing “fin”–labels

Jaco van de Pol, Aarhus+Twente Concurrency for Model Checking 30 / 40

Binary Decision Diagrams

Concise, canonical, representation for Boolean functions
Used in Symbolic Model Checking to represent sets of states

Jaco van de Pol, Aarhus+Twente Concurrency for Model Checking 31 / 40

Apply Operator on Binary Decision Diagrams

Towards Multi-Core BDD [Tom van Dijk]
Apply(⊗, leaf1, leaf2) = leaf1 ⊗ leaf2

Apply(⊗,B1,B2) =
let z = min(topvar(B1), topvar(B2))

L = Apply(⊗,B1|z=0,B2|z=0)
H = Apply(⊗,B1|z=1,B2|z=1)
R = MakeUniqueNode(z , L, H)

in R

Two recursive calls

MakeUniqueNode uses concurrent shared hashtable
Caching uses concurrent lossy hashtable
Spawn/Sync requires a fine-grained task scheduler (deque)

Jaco van de Pol, Aarhus+Twente Concurrency for Model Checking 32 / 40

Apply Operator on Binary Decision Diagrams

Towards Multi-Core BDD [Tom van Dijk]
Apply(⊗, leaf1, leaf2) = leaf1 ⊗ leaf2

Apply(⊗,B1,B2) =
let z = min(topvar(B1), topvar(B2))

L = Apply(⊗,B1|z=0,B2|z=0)
H = Apply(⊗,B1|z=1,B2|z=1)
R = MakeUniqueNode(z , L, H)

in R

Two recursive calls
MakeUniqueNode uses concurrent shared hashtable

Caching uses concurrent lossy hashtable
Spawn/Sync requires a fine-grained task scheduler (deque)

Jaco van de Pol, Aarhus+Twente Concurrency for Model Checking 32 / 40

Apply Operator on Binary Decision Diagrams

Towards Multi-Core BDD [Tom van Dijk]
Apply(⊗, leaf1, leaf2) = leaf1 ⊗ leaf2
Apply(⊗,B1,B2) = if (⊗,B1,B2)→ R in cache, return R
Apply(⊗,B1,B2) =

let z = min(topvar(B1), topvar(B2))
L = Apply(⊗,B1|z=0,B2|z=0)
H = Apply(⊗,B1|z=1,B2|z=1)
R = MakeUniqueNode(z , L, H)
store (⊗,B1,B2)→ R in cache

in R

Two recursive calls
MakeUniqueNode uses concurrent shared hashtable
Caching uses concurrent lossy hashtable

Spawn/Sync requires a fine-grained task scheduler (deque)

Jaco van de Pol, Aarhus+Twente Concurrency for Model Checking 32 / 40

Apply Operator on Binary Decision Diagrams

Towards Multi-Core BDD [Tom van Dijk]
Apply(⊗, leaf1, leaf2) = leaf1 ⊗ leaf2
Apply(⊗,B1,B2) = if (⊗,B1,B2)→ R in cache, return R
Apply(⊗,B1,B2) =

let z = min(topvar(B1), topvar(B2))
L = spawn Apply(⊗,B1|z=0,B2|z=0)
H = spawn Apply(⊗,B1|z=1,B2|z=1)
R = MakeUniqueNode(z ,sync L, sync H)
store (⊗,B1,B2)→ R in cache

in R

Two recursive calls
MakeUniqueNode uses concurrent shared hashtable
Caching uses concurrent lossy hashtable
Spawn/Sync requires a fine-grained task scheduler (deque)

Jaco van de Pol, Aarhus+Twente Concurrency for Model Checking 32 / 40

Sylvan Framework for Multi-core Decision Diagrams

Features of Sylvan [https://github.com/utwente-fmt/sylvan]

Support: BDD, Multiway/Multiterminal DDs, ZDDs, . . .
Programmable interface (C, C++, Python)
Ported to RDMA: Multicore/Distributed [Wytse Oortwijn, SPIN17]

Missing: dynamic variable reordering

Applications
Symbolic Reachability with BFS strategy and Saturation
Symbolic Bisimulation Reduction / CTMC lumping
Symbolic Parity Game Solving (Zielonka’s algorithm)

Jaco van de Pol, Aarhus+Twente Concurrency for Model Checking 33 / 40

https://github.com/utwente-fmt/sylvan

Sylvan Framework for Multi-core Decision Diagrams

Features of Sylvan [https://github.com/utwente-fmt/sylvan]

Support: BDD, Multiway/Multiterminal DDs, ZDDs, . . .
Programmable interface (C, C++, Python)
Ported to RDMA: Multicore/Distributed [Wytse Oortwijn, SPIN17]

Missing: dynamic variable reordering

Applications
Symbolic Reachability with BFS strategy and Saturation
Symbolic Bisimulation Reduction / CTMC lumping
Symbolic Parity Game Solving (Zielonka’s algorithm)

Jaco van de Pol, Aarhus+Twente Concurrency for Model Checking 33 / 40

https://github.com/utwente-fmt/sylvan

LTSmin: high-performance model checker
LTSmin and its language-independent interface PINS
https://github.com/utwente-fmt/ltsmin

Parallel LTL-X model checking with partial-order reduction
Symbolic reachability with saturation and bisimulation reduction
Distributed reachability and bisimulation reduction
Competition Awards: RERS 2012, 2013, 2016; MCC 2016 gold in LTL

Jaco van de Pol, Aarhus+Twente Concurrency for Model Checking 34 / 40

https://github.com/utwente-fmt/ltsmin

LTSmin: high-performance model checker
LTSmin and its language-independent interface PINS
https://github.com/utwente-fmt/ltsmin

Parallel LTL-X model checking with partial-order reduction
Symbolic reachability with saturation and bisimulation reduction
Distributed reachability and bisimulation reduction

Competition Awards: RERS 2012, 2013, 2016; MCC 2016 gold in LTL

Jaco van de Pol, Aarhus+Twente Concurrency for Model Checking 34 / 40

https://github.com/utwente-fmt/ltsmin

LTSmin: high-performance model checker
LTSmin and its language-independent interface PINS
https://github.com/utwente-fmt/ltsmin

Parallel LTL-X model checking with partial-order reduction
Symbolic reachability with saturation and bisimulation reduction
Distributed reachability and bisimulation reduction
Competition Awards: RERS 2012, 2013, 2016; MCC 2016 gold in LTL

Jaco van de Pol, Aarhus+Twente Concurrency for Model Checking 34 / 40

https://github.com/utwente-fmt/ltsmin

Conclusion

Concurrent Datastructures
hash-tables, lossy cache, union-find, deque
mostly lock-less, use CAS, NUMA-aware programming

Parallel Algorithms, in particular parallel DFS-based
Total amount of work: try to avoid duplicate work
Speedup bottlenecks: try to avoid sequential repair
Careful reconsider necessary invariants

Recent directions of interest
GPU algorithms and implementations
Parallel SAT/QBF solving
Parallel parameter synthesis (probability, time)
Parallel strategy synthesis for games

Jaco van de Pol, Aarhus+Twente Concurrency for Model Checking 35 / 40

Conclusion

Concurrent Datastructures
hash-tables, lossy cache, union-find, deque
mostly lock-less, use CAS, NUMA-aware programming

Parallel Algorithms, in particular parallel DFS-based
Total amount of work: try to avoid duplicate work
Speedup bottlenecks: try to avoid sequential repair
Careful reconsider necessary invariants

Recent directions of interest
GPU algorithms and implementations
Parallel SAT/QBF solving
Parallel parameter synthesis (probability, time)
Parallel strategy synthesis for games

Jaco van de Pol, Aarhus+Twente Concurrency for Model Checking 35 / 40

Conclusion

Concurrent Datastructures
hash-tables, lossy cache, union-find, deque
mostly lock-less, use CAS, NUMA-aware programming

Parallel Algorithms, in particular parallel DFS-based
Total amount of work: try to avoid duplicate work
Speedup bottlenecks: try to avoid sequential repair
Careful reconsider necessary invariants

Recent directions of interest
GPU algorithms and implementations
Parallel SAT/QBF solving
Parallel parameter synthesis (probability, time)
Parallel strategy synthesis for games

Jaco van de Pol, Aarhus+Twente Concurrency for Model Checking 35 / 40

Literature: Overview and LTSmin tool

J. Barnat, V. Bloemen, A. Duret-Lutz, Laarman, Petrucci, vd Pol, Renault
Parallel Model Checking Algorithms for Linear-Time Temporal Logic
In: Handbook of Parallel Constraint Reasoning 2018: 457-507
T. van Dijk, J. van de Pol
Multi-core Decision Diagrams
In: Handbook of Parallel Constraint Reasoning, 2018: pp. 509-545

S. Blom, J. van de Pol, M. Weber [CAV’10]
LTSmin: Distributed and Symbolic Reachability
A. Laarman, J. van de Pol, M. Weber [NFM’11]
Multi-Core LTSmin: Marrying Modularity and Scalability
G. Kant, A. Laarman, J. Meijer, J. vd Pol, S. Blom, T. v Dijk [TACAS’15]
LTSmin: High-Performance Language-Independent Model Checking

Jaco van de Pol, Aarhus+Twente Concurrency for Model Checking 36 / 40

Literature on parallel DFS-based SCC detection

R.E. Tarjan [SIAM 1972]
Depth-First Search and Linear Graph Algorithms
E.W. Dijkstra [Prentice Hall 1976]
A Discipline of Programming
G. Lowe [TACAS’14]
Concurrent Depth-First Search Algorithms
E. Renault, A. Duret-Lutz, F. Kordon, D. Poitrenaud [TACAS’15]
Parallel Explicit Model Checking for Generalized Büchi Automata
V. Bloemen, A. Laarman, J. van de Pol [PPoPP’16]
Multi-Core On-The-Fly SCC Decomposition
S.V. Jayanti, R.E. Tarjan, E. Boix-Adserà [PODC’19]
Randomized Concurrent Set Union and Generalized Wake-Up.

Jaco van de Pol, Aarhus+Twente Concurrency for Model Checking 37 / 40

Literature on parallel LTL model checking

Jiri Barnat, Lubos Brim, Jakub Chaloupka [ASE’03]
Parallel Breadth-First Search LTL Model-Checking
Jiri Barnat, Lubos Brim, Petr Rockai [SPIN’07]
Scalable Multi-core LTL Model-Checking
A. Laarman, L. Langerak, J. vd Pol, M. Weber, A. Wijs [ATVA’11]
Multi-core Nested Depth-First Search
S. Evangelista, L. Petrucci [ATVA’11]
Parallel Nested Depth-First Searches for LTL Model Checking
A. Laarman, S. Evangelista, L. Petrucci, J. van de Pol [ATVA’12]
Improved Multi-Core Nested Depth-First Search
A. Laarman, M. Olesen, A. Dalsgaard, K. Larsen, J. vd Pol [CAV’13]
Multi-core Emptiness Checking of Timed Büchi Automata
V. Bloemen, A. Duret-Lutz, J. van de Pol [SPIN’17]
Explicit state model checking with Büchi and Rabin automata

Jaco van de Pol, Aarhus+Twente Concurrency for Model Checking 38 / 40

Literature on parallel BDDs and symbolic model checking

S. Kimura, E.M. Clarke [ICCD’90]
A parallel algorithm for constructing Binary Decision Diagrams
O. Grumberg, T. Heyman, A. Schuster [CAV’01]
Distributed Symbolic Model Checking for µ-Calculus
T. van Dijk, J. van de Pol [TACAS’15]
Sylvan: Multi-Core Decision Diagrams
Tom van Dijk, Jaco van de Pol [TACAS’16]
Multi-core Symbolic Bisimulation Minimisation
W. Oortwijn, T. van Dijk, J. van de Pol [SPIN’17]
Distributed binary decision diagrams for symbolic reachability
Tom van Dijk, Jeroen Meijer, Jaco van de Pol [TACAS’19]
Multi-core On-The-Fly Saturation

Jaco van de Pol, Aarhus+Twente Concurrency for Model Checking 39 / 40

Parallel SCC with UF and Cyclic List

a b c

d

e f

b

a c d

e

f

{r,b} {b} {b} {r}

{r,b} {r}

a

b

c

e

f

g

Jaco van de Pol, Aarhus+Twente Concurrency for Model Checking 40 / 40

	Introduction
	Strongly Connected Components
	A simple parallel SCC algorithm
	Dijkstra's sequential SCC algorithm
	A parallel DFS algorithm for SCCs

	Multicore Model Checking
	Explicit-state LTL model checking
	Symbolic model checking
	LTSmin: high-performance model checker

	Conclusion

