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Cyber Physical System (CPS)

Examples

System with three different interacting aspects

. A continuous deterministic part following differential equations

. A discrete part with deterministicaly guarded transitions

. Interactions with the environment
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Cyber Physical System Analysis

State-space

. Continuous part difficult to analyse

. Discrete part state space can be large

. Interaction difficult to model

⇒ Testing

Testing is the only tractable validation technique
Require the generation of real-valued signal as input of the CPS.

CPS testing problem

Input
signal CPS

Output
signal

w f f (w)

∀w ,w |= φ ⇒ f (w) |= ψ
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Specifying input signals

Domain of signals

. In full generality: R→ Rn

. Bounding the signal to a compact domain D ⊂ Rn: [0;T ]→ D
No finite representation

. Piece-wise regular i.e. constant/linear/polynomial between discrete
events
How to define events

. A time automaton defines a language from which a signal is mapped
over.

Using time automaton to model signal [Alur & Dill, 1994]

- Well suited for modelling time constraints between events.

- Compact representation.

⇒ require to sample time words from time automaton language.
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Geometrical shape of time language
Constraints of timings along a path w = polytope PL

w

a; x ≤ 1; y := 0 b; x ≤ 1; y := 0

c ; y ≤ 1; x := 0

a

b

c

b

c

a

Vol(PL
abb) = 1

6

Vol(PL
abc) = 1

2

Vol(PL
aca) = 1
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Isotropic sampling (a ”by-default” sampling)

At each step...

. assign same weight to every edge e and pick one randomly;

. assign same weight to every time t such that (t, e) can be taken.

a; x ≤ 1/y := 0
b; x ≤ 1/y := 0

c; y ≤ 1/x := 0

a

b, 1
2 , P(T < t) = 1

1−x
t

c , 1
2 ,P(T < t) = t
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Polytopes and CDF

Uniform distribution for a fixed word

Given a word α in the language of the automaton; and P the associated
polytope. The uniform distribution over timed vector t ∈ P assigns the
density probability ω(t) = 1

Vol(P) .

Cumulative Density Function (CDF)

The CDF of the uniform distribution over α is F : P → [0; 1] defines as
F (t) =

∫
T<t ω(T)dT. Moreover, the CDF F can be written as:

F (t1, . . . , tn) = F1(t1)F2(t2|t1) . . .Fn(tn|t1, . . . , tn−1)

In QEST16

Given a path in a TA; one can effectively compute the CDF of the uniform
distribution in the form Fi (ti |t1, . . . , ti−1) = πi (t1,...,ti )

γi (t1,...,ti−1) with πi and γi
polynomials of degree i .
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QEST16 in a nutshell

Method

. Compute the forward reachable zone-graph of the automaton.

. Compute recusively the volume of language for each state of the
zone-graph.

. The PDF ω(t) is the normallized volume.

Recursive definition over state of the zone-graph

v0(s) = 1

vn+1(s) =
∑

δ∈∆(s)

∫ ubδ(s)

lbδ(s)
vn(s(t,δ))dt.

Shape of zone matter !

Zone-graph require additionnal splitting to ensure that the integral is
simple.
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Example

a; x ≤ 1; y := 0 b; x ≤ 1; y := 0

c ; y ≤ 1; x := 0

a, . . .

b, 2.5−4x+1.5x2

3.5−4x+1.5x2 ,P(T < t) = 4t−2xt+t2

5−8x+3x2

c, 1
3.5−4x+1.5x2 ,P(T < t) = t

b, 1−x
2−x

,P(T < t) = t
1−x

c , 1
2−x

,P(T < t) = t

a, 1
1
,P(T < t) = t

Vol(PL
abb) = 1

6

Vol(PL
abc) = 1

2

Vol(PL
aca) = 1
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Sampling polytopes

Unit cube

In practice sampling methods produce floating point number in [0; 1].
How to sample the uniform distribution ?

Inverse Sampling

Recalls Fi (ti |t1, . . . , ti−1) is a polynomial in ti → [0; 1].

- Sample a real u in [0; 1]

- Compute ti as the root of Fi (ti |t1, . . . , ti−1)− u

Note that Fi is a strictly increasing polynomial ⇒ Newton method applies.

F−1 : [0; 1]n → P
. Given u in [0; 1]n

. Apply inverse sampling iteratively to obtain t ∈ P
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Sampling polytopes II

Example in dimension 2

[0; 1]2

(x , y)|

0 ≤ x
0 ≤ y
y ≤ 2x
y ≤ 2− 2x


F−1

F

Sampling methods

. Uniform (Pseudo) Random number

. Low discrepancy sequence

11 / 21



Sampling polytopes II

Example in dimension 2

[0; 1]2

(x , y)|

0 ≤ x
0 ≤ y
y ≤ 2x
y ≤ 2− 2x


F−1

F

Sampling methods

. Uniform (Pseudo) Random number

. Low discrepancy sequence

11 / 21



Random vs low discrepancy sequence (Empirical)

Uniform Random Kronecker

n = 10
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Random vs low discrepancy sequence (Empirical)

Uniform Random Kronecker

n = 20
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Random vs low discrepancy sequence (Empirical)

Uniform Random Kronecker

n = 50
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Random vs low discrepancy sequence (Empirical)

Uniform Random Kronecker

n = 100
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Random vs low discrepancy sequence (Empirical)

Uniform Random Kronecker

n = 150
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Random vs low discrepancy sequence (Empirical)

Uniform Random Kronecker

n = 200
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Discrepancy

Star Discrepancy Definition

For b = (b1, . . . , bn) ∈ [0, 1]n, we define the box
[0,b] = [0, b1]× · · · × [0, bn] . The star discrepancy of a finite set S is
defined as:

D?(S) = sup
b∈[0,1]n

∣∣∣∣Vol([0,b])− |S ∩ [0,b]|
|S |

∣∣∣∣ .
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Random vs low discrepancy sequence (theory)
For g : [0, 1]n → [a, b]):

(Pseudo) Random sequence

Guarantee given as probabilistic framing i.e. confidence interval.
ex Chernoff-Hoeffding bounds: Let z > 0, let 1− 2e−2z2

be the confidence
level:

P

(∣∣∣∣∣ 1

N

N∑
n=1

g(p(n))−
∫

[0,1]n
g(r)dr

∣∣∣∣∣ < 2z
b − a√

N

)
≥ 1− 2e−2z2

Low Discrepancy Sequence

Guarantee given as deterministic framing i.e. interval using
Koksma-Hlawka inequality.∣∣∣∣∣ 1

N

N∑
n=1

g(p(n))−
∫

[0,1]n
g(r)dr

∣∣∣∣∣ ≤ V ∗(g)(D∗(S))1/n
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Application to the Evaluation of Uniformity Degree
Sampling

F−1

F−1

Evaluating

F

F

Kolmogorov-Smirnov test

. Quantify the distance between two distributions.

. When apply between an empirical distribution S and the uniform one,
equivalent to D?(S).
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Application To CPS Testing

CPS Testing Abstract

Input
signal CPS

Output
signal

w f f (w)
w |= φ ⇒ f (w) |= ψ

[φ]Timed
Automaton

[f]Simulink Model

[ψ]Function to evaluate

Traces

Signals

Estimated expectation
of the function

Timed
Automaton
preprocessing

Computation of
Uniform CDFs F

Sampling

Stochastic Process Generation Signal Generation

Signal Mapping

Black Box Testing

Check
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Example: KiBaM System

A CPS with a controller and a battery

Idle Active

a : x < τ3 ∧ y > τ2; x := 0

b : x < τ1; y := 0

1

s

Integrator

1

s

Integrator1

1.1111

Gain

10

Gain1

0.01

Gain2

0.05

Gain3

1

In

1

Bound

2

Available

- The controller is switched on at least every τ3 time unit.

- The controller consume energy when switch on.

- The battery self-recharge on low load.
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Example: KiBaM System Results

0

0.2

0.4

0.6

0.8

1

0 50 100 150 200 250

Bound Energy
Available Energy
Controller State

(Available > 0) U≤150 T

CDF computation: 10s
Number of trajectories: 1,000,000
Uniform Random: Falsifies 53 trajectories, 1400s of simulations
Low discrepancy sequence: Falsifies 56 trajectories, 1600s of simulations
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Stability of a Σ∆ Modulator

Characteristics

- Analog to digital converter;

- Mixing discrete-time and continuous-time components;

- Subject to saturation;

⇒ treated as a black box.

Input Signals

q4

q5

q6

q3q2q1q0

x1 ∈ (1, 6)
x1 := 0

x2 ∈ (1, 6)
x2 := 0

x3 ∈ (1, 6)
x3 := 0

x4 ∈ (1, 6)
x4 := 0

x1 ∈ (0, 6)
x1 := 0

x2 ∈ (0, 6)
x2 := 0

x3 ∈ (0, 6)
x3 := 0

- A pseudo-periodic signal.

- Signals are linear interpolation based on location.

- CDF computation: 30s
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Stability of a Σ∆ Modulator II

(¬saturation)U≤simtime T

- Several batches with a scaling parameter κ for frequencies

- 100 trajectories per batch, simulated in 1 minute

- Several test with scaling parameter for frequencies

- κ ≥ 0.8× 10−7 ⇒ saturation detected with both methods
- κ = 0.6× 10−7 ⇒ saturation detected with low discrepancy

sequence
- κ ≤ 0.5× 10−7 ⇒ no saturation detected

20 / 21



Conclusion and Perspective

Conclusion

. Combining uniform word generation and low-discrepancy sampling;

. Validation of complex CPS system.

Perspective

- Replacing automaton specification by a specification logic;

- Better sampling of the signal value space;

- An easy to use, self-contained implementation;

- Computing star discrepancy efficiently.
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