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System with three different interacting aspects
> A continuous deterministic part following differential equations
> A discrete part with deterministicaly guarded transitions

> Interactions with the environment




Cyber Physical System Analysis
State-space
> Continuous part difficult to analyse

> Discrete part state space can be large
> Interaction difficult to model




Cyber Physical System Analysis
State-space
> Continuous part difficult to analyse

> Discrete part state space can be large
> Interaction difficult to model

Testing is the only tractable validation technique
Require the generation of real-valued signal as input of the CPS.




Cyber Physical System Analysis

State-space

> Continuous part difficult to analyse

> Discrete part state space can be large
> Interaction difficult to model

= Testing

Testing is the only tractable validation technique
Require the generation of real-valued signal as input of the CPS.

CPS testing problem

Input @ Output
signal =2 signal

w

f f(w)
Yw,w = ¢ = fw) E¢
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Specifying input signals

Domain of signals
> In full generality: R — R”

> Bounding the signal to a compact domain D C R": [0; T] — D
No finite representation

> Piece-wise regular i.e. constant/linear/polynomial between discrete
events
How to define events

> A time automaton defines a language from which a signal is mapped
over.

Using time automaton to model signal [Alur & Dill, 1994]
- Well suited for modelling time constraints between events.
- Compact representation.

= require to sample time words from time automaton language.




Geometrical shape of time language
Constraints of timings along a path w = polytope PL

Vol(PL,) =1
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Isotropic sampling (a " by-default” sampling)

At each step...

> assign same weight to every edge e and pick one randomly;

> assign same weight to every time t such that (t, e) can be taken.
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Polytopes and CDF

Uniform distribution for a fixed word

Given a word « in the language of the automaton; and P the associated
polytope. The uniform distribution over timed vector t € P assigns the

density probability w(t) = Vo%@)

Cumulative Density Function (CDF)

The CDF of the uniform distribution over « is F : P — [0; 1] defines as
F(t) = [+, w(T)dT. Moreover, the CDF F can be written as:

F(tl, ce t,,) = Fl(tl)Fz(tgltl) S F,,(t,,|t1, e t,,,l)

In QEST16
Given a path in a TA; one can effectively compute the CDF of the uniform
distribution in the form F;(t;|t1,..., ti—1) = miltLenti) ik ;i and 7;

. . Yi(ty,-.sti—1)
polynomials of degree /.




QEST16 in a nutshell
Method

> Compute the forward reachable zone-graph of the automaton.

> Compute recusively the volume of language for each state of the
zone-graph.

> The PDF w(t) is the normallized volume.

Recursive definition over state of the zone-graph
Vo(S) = 1

ubs(s)
wia®) = 3 [ vl
sen(s) V1ps(s)




QEST16 in a nutshell
Method

> Compute the forward reachable zone-graph of the automaton.

> Compute recusively the volume of language for each state of the
zone-graph.

> The PDF w(t) is the normallized volume.

Vo(S) =1 ba(e)
ubgs (s

wia®) = 3 [ vl
sen(s) V1ps(s)

Zone-graph require additionnal splitting to ensure that the integral is
simple.




Example

Vol(PL,,) =

ax<1ly:=0 bix=Lly:=0

-0 /
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Sampling polytopes

Unit cube

In practice sampling methods produce floating point number in [0; 1].
How to sample the uniform distribution ?

Inverse Sampling

Recalls F;(tj|t1,...,ti—1) is a polynomial in t; — [0;1].
- Sample a real v in [0;1]
- Compute t; as the root of Fi(ti|ty,...,ti—1) — u

Note that F; is a strictly increasing polynomial = Newton method applies.

F71:[0;1]" > P
> Given u in [0; 1]"

> Apply inverse sampling iteratively to obtain t € P




Sampling polytopes Il

Example in dimension 2

[0; 1]
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Example in dimension 2

0<x

0<y
Conll ) 2ox

y<2-—-2x

|

Sampling methods
> Uniform (Pseudo) Random number

> Low discrepancy sequence
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Random vs low discrepancy sequence (Empirical)

Uniform Random

Kronecker
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Random vs low discrepancy sequence (Empirical)

Uniform Random

Kronecker
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Discrepancy

Star Discrepancy Definition

For b= (b1,...,by) € [0,1]", we define the box
[0,b] = [0, b1] X --- x [0, by] . The star discrepancy of a finite set S is
defined as:

D.(S)= sup |vor([0,b]) — 210:bll
be[o,1]” |5|




Random vs low discrepancy sequence (theory)
For g : [0,1]" — [a, b]):

(Pseudo) Random sequence

Guarantee given as probabilistic framing i.e. confidence interval.
ex Chernoff-Hoeffding bounds: Let z >0, let 1 — 2e27° be the confidence

level:
P (

N
1
Bl E (n) _/ d
P r)dr
N n=1 g( ) [071]n g( )

b—a 2
<2z >1-—2e %2
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Random vs low discrepancy sequence (theory)
For g : [0,1]" — [a, b]):

(Pseudo) Random sequence

Guarantee given as probabilistic framing i.e. confidence interval.
ex Chernoff-Hoeffding bounds: Let z >0, let 1 — 2e27° be the confidence

level:
P (

Low Discrepancy Sequence

N
1
Bl (n) _/ d
p r)dr
N;:lg( ) [0,1]"g()

VN

b_
<2z a) >1—2¢27

Guarantee given as deterministic framing i.e. interval using
Koksma-Hlawka inequality.
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Kolmogorov-Smirnov test
> Quantify the distance between two distributions.

> When apply between an empirical distribution S and the uniform one,
equivalent to D,(S).




Application To CPS Testing
CPS Testing Abstract

Input \r@ . Output
signal 2 " signal

w f f(w)
wiE o = f(w) = v




Application To CPS Testing
CPS Testing Abstract

Input r@ Output
signal =) signal

w
wE ¢ = flw) =

[¢|Timed | _ Stochastic Process Generation : :Signal Generation:

Timed
Sampling

Automator; Computation of | :

Automaton Uniform CDFs F |:
oo

preprocessing
...................................................................... Traces
[f]Simulink Model ;'B]';;'cl{'E&"Téé't'i'h'g"g Signals | .
> = Signal Mapping |:

[1/]Function to evaluate
Estimated expectation

of the function



Example: KiBaM System

A CPS with a controller and a battery

a:x<mAy>m;x:=0

b:x<T1;y:=0

Integrator1 Gaint

»(_ 2

05 Available

In
Gain3

- The controller is switched on at least every 73 time unit.
- The controller consume energy when switch on.

- The battery self-recharge on low load.




Example:

KiBaM System Results
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Example: KiBaM System Results

1 Bound Energy —— 1
I Wean e Available Energy — |

0. vailable Ener
0'2 \ \ul \u[ vv/ | Ao Controller Sta%cz N
0.4 VA a7 7
0.2 MURAASRE RV eaver

0 Inn 1 L1 | Nﬂ Hl\;

0 50 100 150 200 250

CDF computation: 10s
Number of trajectories: 1,000,000

Uniform Random: Falsifies 53 trajectories, 1400s of simulations

Low discrepancy sequence: Falsifies 56 trajectories, 1600s of simulations
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- Analog to digital converter;
- Mixing discrete-time and continuous-time components;

- Subject to saturation;

= treated as a black box.




Stability of a XA Modulator
Characteristics
- Analog to digital converter;
- Mixing discrete-time and continuous-time components;

- Subject to saturation;

= treated as a black box.

Input Signals
X4e(1 6) x1 € (1,6)
=0
x1 €(0,6) x€(0,6) xse(0,6) Xl
x1:=0 xp =0 X3 —0
X3€(1 6) X2€(1 6)
x3:=0 xp =0

- A pseudo-periodic signal.
- Signals are linear interpolation based on location.
- CDF computation: 30s




Stability of a XA Modulator Il

(—saturation)U=smtime T

- Several batches with a scaling parameter k for frequencies

- 100 trajectories per batch, simulated in 1 minute

- Several test with scaling parameter for frequencies
- k> 0.8 x 1077 = saturation detected with both methods
- k=0.6 x 1077 = saturation detected with low discrepancy

sequence
- kK <0.5x 1077 = no saturation detected
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Conclusion
> Combining uniform word generation and low-discrepancy sampling;
> Validation of complex CPS system.

Perspective

Replacing automaton specification by a specification logic;

Better sampling of the signal value space;

An easy to use, self-contained implementation;

Computing star discrepancy efficiently.
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