Generation of Signals under Temporal Constraints for CPS Testing

<u>Benoît Barbot¹</u>, Nicolas Basset² and Thao Dang²

¹LACL, Université Paris Est Créteil, France ²VERIMAG/CNRS, Université Grenoble Alpes, France

Vendredi 24 Mai 2019, Mefosyloma

Cyber Physical System (CPS)

Cyber Physical System (CPS)

System with three different interacting aspects

- $\triangleright~A$ continuous deterministic part following differential equations
- ▷ A discrete part with deterministicaly guarded transitions
- Interactions with the environment

Cyber Physical System Analysis

State-space

- ▷ Continuous part difficult to analyse
- Discrete part state space can be large
- Interaction difficult to model

Cyber Physical System Analysis

State-space

- Continuous part difficult to analyse
- Discrete part state space can be large
- Interaction difficult to model

\Rightarrow Testing

Testing is the only tractable validation technique Require the generation of real-valued signal as input of the CPS.

Cyber Physical System Analysis

State-space

- Continuous part difficult to analyse
- Discrete part state space can be large
- Interaction difficult to model

\Rightarrow Testing

Testing is the only tractable validation technique Require the generation of real-valued signal as input of the CPS.

CPS testing problem

$$\begin{array}{ccc}
\text{Input} & & & \text{Output} \\
\text{signal} & & & \text{Signal} \\
w & f & f(w) \\
\forall w, w \models \phi & \Rightarrow & f(w) \models \psi
\end{array}$$

Domain of signals

 \triangleright In full generality: $\mathbb{R} \to \mathbb{R}^n$

- \triangleright In full generality: $\mathbb{R} \to \mathbb{R}^n$
- \triangleright Bounding the signal to a compact domain $D \subset \mathbb{R}^n$: [0; T] $\rightarrow D$

- \triangleright In full generality: $\mathbb{R} \to \mathbb{R}^n$
- ▷ Bounding the signal to a compact domain $D \subset \mathbb{R}^n$: [0; T] → DNo finite representation

- \triangleright In full generality: $\mathbb{R} \to \mathbb{R}^n$
- ▷ Bounding the signal to a compact domain $D \subset \mathbb{R}^n$: [0; T] → DNo finite representation
- Piece-wise regular i.e. constant/linear/polynomial between discrete events

- \triangleright In full generality: $\mathbb{R} \to \mathbb{R}^n$
- ▷ Bounding the signal to a compact domain $D \subset \mathbb{R}^n$: [0; T] → DNo finite representation
- Piece-wise regular i.e. constant/linear/polynomial between discrete events
 How to define events

- \triangleright In full generality: $\mathbb{R} \to \mathbb{R}^n$
- ▷ Bounding the signal to a compact domain $D \subset \mathbb{R}^n$: [0; T] → DNo finite representation
- Piece-wise regular i.e. constant/linear/polynomial between discrete events
 How to define events
- A time automaton defines a language from which a signal is mapped over.

Domain of signals

- \triangleright In full generality: $\mathbb{R} \to \mathbb{R}^n$
- ▷ Bounding the signal to a compact domain $D \subset \mathbb{R}^n$: [0; T] → DNo finite representation
- Piece-wise regular i.e. constant/linear/polynomial between discrete events
 How to define events
- ▷ A time automaton defines a language from which a signal is mapped over.

Using time automaton to model signal [Alur & Dill, 1994]

- Well suited for modelling time constraints between events.
- Compact representation.

Domain of signals

- \triangleright In full generality: $\mathbb{R} \to \mathbb{R}^n$
- ▷ Bounding the signal to a compact domain $D \subset \mathbb{R}^n$: [0; T] → DNo finite representation
- Piece-wise regular i.e. constant/linear/polynomial between discrete events
 How to define events
- A time automaton defines a language from which a signal is mapped over.

Using time automaton to model signal [Alur & Dill, 1994]

- Well suited for modelling time constraints between events.
- Compact representation.
- \Rightarrow require to sample time words from time automaton language.

Geometrical shape of time language

Constraints of timings along a path $w = \text{polytope } P_w^L$

Isotropic sampling (a "by-default" sampling)

At each step...

- \triangleright assign same weight to every edge *e* and pick one randomly;
- \triangleright assign same weight to every time t such that (t, e) can be taken.

Isotropic sampling (a "by-default" sampling)

At each step...

- \triangleright assign same weight to every edge *e* and pick one randomly;
- \triangleright assign same weight to every time t such that (t, e) can be taken.

Isotropic sampling (a "by-default" sampling)

At each step...

- \triangleright assign same weight to every edge *e* and pick one randomly;
- \triangleright assign same weight to every time t such that (t, e) can be taken.

Polytopes and CDF

Uniform distribution for a fixed word

Given a word α in the language of the automaton; and \mathcal{P} the associated polytope. The uniform distribution over timed vector $\mathbf{t} \in \mathcal{P}$ assigns the density probability $\omega(\mathbf{t}) = \frac{1}{\operatorname{Vol}(\mathcal{P})}$.

Polytopes and CDF

Uniform distribution for a fixed word

Given a word α in the language of the automaton; and \mathcal{P} the associated polytope. The uniform distribution over timed vector $\mathbf{t} \in \mathcal{P}$ assigns the density probability $\omega(\mathbf{t}) = \frac{1}{\operatorname{Vol}(\mathcal{P})}$.

Cumulative Density Function (CDF)

The CDF of the uniform distribution over α is $F : \mathcal{P} \to [0; 1]$ defines as $F(\mathbf{t}) = \int_{\mathbf{T} < \mathbf{t}} \omega(\mathbf{T}) d\mathbf{T}$. Moreover, the CDF F can be written as:

$$F(t_1,...,t_n) = F_1(t_1)F_2(t_2|t_1)...F_n(t_n|t_1,...,t_{n-1})$$

Polytopes and CDF

Uniform distribution for a fixed word

Given a word α in the language of the automaton; and \mathcal{P} the associated polytope. The uniform distribution over timed vector $\mathbf{t} \in \mathcal{P}$ assigns the density probability $\omega(\mathbf{t}) = \frac{1}{\operatorname{Vol}(\mathcal{P})}$.

Cumulative Density Function (CDF)

The CDF of the uniform distribution over α is $F : \mathcal{P} \to [0; 1]$ defines as $F(\mathbf{t}) = \int_{\mathbf{T} < \mathbf{t}} \omega(\mathbf{T}) d\mathbf{T}$. Moreover, the CDF F can be written as:

$$F(t_1,...,t_n) = F_1(t_1)F_2(t_2|t_1)...F_n(t_n|t_1,...,t_{n-1})$$

In QEST16

Given a path in a TA; one can effectively compute the CDF of the uniform distribution in the form $F_i(t_i|t_1, \ldots, t_{i-1}) = \frac{\pi_i(t_1, \ldots, t_i)}{\gamma_i(t_1, \ldots, t_{i-1})}$ with π_i and γ_i polynomials of degree *i*.

QEST16 in a nutshell

Method

- ▷ Compute the forward reachable zone-graph of the automaton.
- Compute recusively the volume of language for each state of the zone-graph.
- \triangleright The PDF $\omega(t)$ is the normallized volume.

Recursive definition over state of the zone-graph

$$egin{array}{rll} v_0(s)&=&1\ v_{n+1}(s)&=&\sum_{\delta\in\Delta(s)}\int_{\mathrm{lb}_\delta(s)}^{\mathrm{ub}_\delta(s)}v_n(s_{(t,\delta)})\mathrm{d}t. \end{array}$$

QEST16 in a nutshell

Method

- ▷ Compute the forward reachable zone-graph of the automaton.
- Compute recusively the volume of language for each state of the zone-graph.
- \triangleright The PDF $\omega(t)$ is the normallized volume.

Recursive definition over state of the zone-graph

$$\begin{array}{lll} v_0(s) & = & 1 \\ v_{n+1}(s) & = & \displaystyle\sum_{\delta \in \Delta(s)} \int_{\mathrm{lb}_{\delta}(s)}^{\mathrm{ub}_{\delta}(s)} v_n(s_{(t,\delta)}) \mathrm{d}t. \end{array}$$

Shape of zone matter !

Zone-graph require additionnal splitting to ensure that the integral is simple.

Example

Sampling polytopes

Unit cube

In practice sampling methods produce floating point number in [0; 1]. How to sample the uniform distribution ?

Sampling polytopes

Unit cube

In practice sampling methods produce floating point number in [0; 1]. How to sample the uniform distribution ?

Inverse Sampling

Recalls $F_i(t_i|t_1, \ldots, t_{i-1})$ is a polynomial in $t_i \rightarrow [0; 1]$.

- Sample a real u in [0; 1]
- Compute t_i as the root of $F_i(t_i|t_1,\ldots,t_{i-1}) u$

Note that F_i is a strictly increasing polynomial \Rightarrow Newton method applies.

Sampling polytopes

Unit cube

In practice sampling methods produce floating point number in [0; 1]. How to sample the uniform distribution ?

Inverse Sampling

Recalls $F_i(t_i|t_1, \ldots, t_{i-1})$ is a polynomial in $t_i \rightarrow [0; 1]$.

- Sample a real u in [0; 1]
- Compute t_i as the root of $F_i(t_i|t_1,\ldots,t_{i-1})-u$

Note that F_i is a strictly increasing polynomial \Rightarrow Newton method applies.

 $F^{-1}: [0;1]^n \to \mathcal{P}$

 \triangleright Given **u** in $[0; 1]^n$

 $\triangleright\,$ Apply inverse sampling iteratively to obtain $t\in \mathcal{P}$

Sampling polytopes II

Sampling polytopes II

Sampling methods

- ▷ Uniform (Pseudo) Random number
- ▷ Low discrepancy sequence

Uniform Random

Kronecker

Discrepancy

Star Discrepancy Definition

For $\mathbf{b} = (b_1, \ldots, b_n) \in [0, 1]^n$, we define the box $[\mathbf{0}, \mathbf{b}] = [0, b_1] \times \cdots \times [0, b_n]$. The star discrepancy of a finite set S is defined as:

$$D_{\star}(S) = \sup_{\mathbf{b} \in [0,1]^n} \left| \operatorname{Vol}([\mathbf{0},\mathbf{b}]) - \frac{|S \cap [\mathbf{0},\mathbf{b}]|}{|S|} \right|$$

Random vs low discrepancy sequence (theory) For $g : [0,1]^n \rightarrow [a,b]$:

(Pseudo) Random sequence

Guarantee given as probabilistic framing i.e. confidence interval. ex Chernoff-Hoeffding bounds: Let z > 0, let $1 - 2e^{-2z^2}$ be the confidence level:

$$\mathbb{P}\left(\left|\frac{1}{N}\sum_{n=1}^{N}g(\mathbf{p}^{(n)})-\int_{[0,1]^n}g(\mathbf{r})d\mathbf{r}\right|<2z\frac{b-a}{\sqrt{N}}\right)\geq 1-2e^{-2z^2}$$

Random vs low discrepancy sequence (theory) For $g : [0,1]^n \rightarrow [a,b]$:

(Pseudo) Random sequence

Guarantee given as probabilistic framing i.e. confidence interval. ex Chernoff-Hoeffding bounds: Let z > 0, let $1 - 2e^{-2z^2}$ be the confidence level:

$$\mathbb{P}\left(\left|\frac{1}{N}\sum_{n=1}^{N}g(\mathbf{p}^{(n)})-\int_{[0,1]^n}g(\mathbf{r})d\mathbf{r}\right|<2z\frac{b-a}{\sqrt{N}}\right)\geq 1-2e^{-2z^2}$$

Low Discrepancy Sequence

Guarantee given as deterministic framing i.e. interval using Koksma-Hlawka inequality.

$$\left| rac{1}{N} \sum_{n=1}^N g(\mathbf{p}^{(n)}) - \int_{[0,1]^n} g(\mathbf{r}) d\mathbf{r}
ight| \leq V^*(g) (D_*(S))^{1/n}$$

Application to the Evaluation of Uniformity Degree Sampling

Kolmogorov-Smirnov test

- ▷ Quantify the distance between two distributions.
- \triangleright When apply between an empirical distribution S and the uniform one, equivalent to $D_{\star}(S)$.

Application To CPS Testing

CPS Testing Abstract

Application To CPS Testing

CPS Testing Abstract

Example: KiBaM System

A CPS with a controller and a battery

- The controller is switched on at least every τ_3 time unit.
- The controller consume energy when switch on.
- The battery self-recharge on low load.

Example: KiBaM System Results

Example: KiBaM System Results

$(Available > 0) U^{\leq 150} T$

CDF computation: 10s Number of trajectories: 1,000,000 Uniform Random: Falsifies 53 trajectories, 1400s of simulations Low discrepancy sequence: Falsifies 56 trajectories, 1600s of simulations

Stability of a $\Sigma\Delta$ Modulator

Characteristics

- Analog to digital converter;
- Mixing discrete-time and continuous-time components;
- Subject to saturation;

 \Rightarrow treated as a black box.

Stability of a $\Sigma\Delta$ Modulator

Characteristics

- Analog to digital converter;
- Mixing discrete-time and continuous-time components;
- Subject to saturation;

\Rightarrow treated as a black box.

Input Signals

- A pseudo-periodic signal.
- Signals are linear interpolation based on location.
- CDF computation: 30s

Stability of a $\Sigma\Delta$ Modulator II

$(\neg$ saturation $)U^{\leq simtime}$ T

- Several batches with a scaling parameter κ for frequencies
- 100 trajectories per batch, simulated in 1 minute
- Several test with scaling parameter for frequencies
 - $\kappa \geq 0.8 \times 10^{-7} \Rightarrow$ saturation detected with both methods
 - $\kappa = 0.6 \times 10^{-7} \Rightarrow$ saturation detected with low discrepancy sequence
 - $\kappa \leq 0.5 imes 10^{-7} \Rightarrow$ no saturation detected

Conclusion and Perspective

Conclusion

- ▷ Combining uniform word generation and low-discrepancy sampling;
- ▷ Validation of complex CPS system.

Conclusion and Perspective

Conclusion

- ▷ Combining uniform word generation and low-discrepancy sampling;
- ▷ Validation of complex CPS system.

Perspective

- Replacing automaton specification by a specification logic;
- Better sampling of the signal value space;
- An easy to use, self-contained implementation;
- Computing star discrepancy efficiently.