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Approach & Choices
• Build an Intrusion Detection System (IDS)

‣ Dedicated to a program & Behavior based

• Handle large and complex programs

‣ C programs (real-life programs)

‣ Multi Processes / Multi Threaded programs
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Approach & Choices
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• Behavior modeling relies on Petri nets

‣ Used as state-space generators

• Construction process is fully automatic

‣ IDS is produced from program sources

‣ No formal background required for developers

‣ No code instrumentation (neither source nor binary)

• Hypothesis

‣ Operating System is considered healthy



From programs to models
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• Several steps are required to produce a model

‣ Extract (relevant) information

‣ Transform it into Petri nets

‣ Optimize the net in order to produce the smallest one 

inside(...) 
{   if (...) 

{ write; } else 
{ close; } if 
(unlink) 

C
;; 

function 
beaphilo # 

Block 0 : pred 
Entry, 2, 3 D.

1209 = 

CFO Petri net
Offline Analysis

Petri net

Builder OptimizationParser
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Extracting Information

• Use of GCC to extract information

‣ During the compilation

‣ No need to modify the MakeFile (just set ENV variable)

‣ Use of Extended Control Flow Graph (ECFG)

7
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Dealing with Perspectives
• All extracted information is not relevant for analysis

‣ However, structural information is systematically extracted

• Need a flexible way to analyse source: Perspectives

‣ Based on a dictionary of remarkable elements

‣ Set of transformations 
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Perspectives & Philosophers
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ThSt Sy

void * philosopher () {
 int f;
 printf("Philo is sitting down to dinner.\n");
 while((f = food_on_table())) {
  pthread_mutex_lock(&fork_left);
  pthread_mutex_lock(&fork_right);
  printf("Philo is eating.\n");
  pthread_mutex_unlock(&fork_right);
  pthread_mutex_unlock(&fork_left);
 }
 printf("Philo is done eating.\n");
 pthread_exit(NULL);
}
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1.   ;; Function philosopher
2.   # BLOCK 2
3.     # PRED:ENTRY(fallthru)
4.      printf(&"Philosopher ...
5.      goto <bb 4> (<L1>);
6.     # SUCC:4(fallthru)
7.   # BLOCK 3
8.     # PRED: 4 (true)
9.      pthread_mutex_lock(&fork3);
10.     pthread_mutex_lock(&fork1);
11.     printf(&"Philosopher ...
12.     pthread_mutex_unlock(&fork3);
13.     pthread_mutex_unlock(&fork1);
14.    # SUCC:4(fallthru)
15.  # BLOCK 4
16.    # PRED:2(fallthru) 3(fallthru)
17.     D.3892 = food_on_table();
18.     f = D.3892;
19.     if (f != 0) goto <L0>;
        else goto <L2>;
20.    # SUCC:3(true) 5(false)
21.  # BLOCK 5
22.    # PRED:4(false)
23.     printf(&"Philosopher ...
24.     pthread_exit (0B);
25.    # SUCC:EXIT

Perspectives & Philosophers

9
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ECFG
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Building (small) Petri Nets

• Production rules : Source to Petri net patterns

‣ Each perspective comes with its own production rules

- 7 rules to build the structural model

- 6 for Thread perspective / 6 for Process Management perspective

• Each information set is transformed into a Petri net

‣ Struct information set gives Structural Model

‣ Others give submodels to be plugged to the structural one

10
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Philos’R’Nets (still small)
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Building (big) Petri Nets
• Merge all subnets into the structural model

‣ Find the right order thanks to the ECFG metadata

‣ Traceability of the origin of Petri nets elements

‣ Manage all specificities of Petri nets to produce correct nets

- Color classes / Color domains

- Initial marking

• One net for each “main” function

‣ Potentially several nets for large applications

- When composed of several executables (start / stop / status...)
12

PNCFOC

Parser Builder Optimizer

PN



One philosopher...
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Offline Analysis

• Some basic properties can be checked before runtime

• Structural properties

‣ Dead code / Infinite loops

• Reachability properties

‣ Dead code / Deadlock

• Causal properties

‣ Starvation / Race Condition

‣ User-specified: “Can a read occurs on a file after I closed it”
14
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From Models to Monitor
• Objective : building a dedicated program monitor
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Playing with Nets
•  All transitions can consume tokens from pool place

• Execution is divided into rounds

‣ Catching an event = beginning of a round

‣ When the pool place is empty = end of a round

‣ The pool place must be empty before beginning a new round
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Playing with Nets & Stack !
• Not sufficient to handle mimicry attacks

‣ Attacks that mimic a correct behavior but doing “bad things”

- System call sequence of these attacks is correct

- Introduce anomalies into call stack
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• Provide flexibility API
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• Needs GCC
• Written in Java

• Can be plugged to Coloane

• GUI for CPN-AMI platform
• View / Edit / Save models

• Check Petri nets syntax
• Allow offline analysis

IDS
• Dynamic Library
• LD_PRELOAD
• Export before run



Conclusion
• Automatic construction of a program dedicated IDS

• Select subset of information: Perspective mechanism

• Use the same model for both offline & online analysis

‣ WYCIWYC : What You’ve Checked is What You’ll Check

• Evinrude has already produced models for:

19

Before reduction After reduction

GZip 842 / 1119 / 2406 149 / 165 / 498

Wu-FTPD 4132 / 5331 / 11754 829 / 963 / 3018

LigHTTPd 3403 / 4264 / 8399 673 / 761 / 2392

places / transitions / arcs



Questions ?

• Thank you for your attention...
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