December 5th, 2008 - Version

1.3b

MefFoSyLoMa Meeting

Jean-Baptiste Voron - LIP6 (UPMC)
Fabrice Kordon - LIP6 (UPMC)

Liviu Iftode - DiscolLab (Rutgers University)

“Evinrude”

How to bulld a

Petri Net-Based IDS
from

Program Sources

Context: Intrusion Detection

Computer System
(network / program / OS)

® Signature-based detection (misuse detection)

® Behavior-based detection (anomaly detection)

» Looking for deviations from an “expected behavior”

» Limitation: parallel and distributed programs

Context: Intrusion Detection

Computer System
(network / program / OS)

® Signature-based detection (misuse detection)

® Behavior-based detection (anomaly detection)

» Looking for deviations from an “expected behavior”

» Limitation: parallel and distributed programs

Context: Intrusion Detection

Computer System
(network / program / OS)

® Signature-based detection (misuse detection)

® Behavior-based detection (anomaly detection)

» Looking for deviations from an “expected behavior”

» Limitation: parallel and distributed programs

Context: Intrusion Detection

Computer System
(network / program / OS)

® Signature-based detection (misuse detection)

® Behavior-based detection (anomaly detection)

» Looking for deviations from an “expected behavior”

» Limitation: parallel and distributed programs

Context: Intrusion Detection

Expected Behavior

Computer System
(network / program / OS)

® Signature-based detection (misuse detection)

® Behavior-based detection (anomaly detection)

» Looking for deviations from an “expected behavior”

» Limitation: parallel and distributed programs

Approach

® Build an Intrusion Detection System (IDS)

» Dedicated to a program & Behavior based

® Handle large and complex programs
» C programs (real-life programs)

» Multi Processes / Multi Threaded programs

S8f 2@

Program Program’s Behavior Intrusion Detection System

® Behavior modeling relies on Petri nets

» Used as state-space generators

Construction process is fully automatic

» IDS is produced from program sources

» No formal background required for developers

» No code instrumentation (neither source nor binary)
Hypothesis

» Operating System is considered healthy

From programs to models

® Several steps are required to produce a model

» Extract (relevant) information
» Transform it into Petri nets

Optimize the net in order to produce the smallest one

Petri net

Builder Optimization

From programs to models

® Several steps are required to produce a model
» Extract (relevant) information
» Transform it into Petri nets

Optimize the net in order to produce the smallest one

Petri net

s Online Analysis .

Monitor

O3
Builder Optimization @

1 Code Generation

Monitoring Philosophers...

® ..is pretty hard with standard IDS !

e Multi-threaded version

» Pthread library calls
- Thread Management

- Thread Synchronization

Monitoring Philosophers...

Monitoring Bhilosophers...

Monitoring Philosophers...

int food_on_table () {
static int food = FOOD;
int myfood;

pthread_mutex_lock(&foodlock);

if (food > 0) { food--; }

myfood = food;
pthread_mutex_unlock (&foodlock);
return myfood;

OV

Extracting Information

e Use of GCC to extract information

» During the compilation
» No need to modify the MakeFile (just set ENV variable)

» Use of Extended Control Flow Graph (ECFG)

Parser module

NC N R
Dealing with Perspectives

o All extracted information is not relevant for analysis

» However, structural information is systematically extracted

® Need a flexible way to analyse source: Perspectives

» Based on a dictionary of remarkable elements

» Set of transformations

NC N R
Dealing with Perspectives

o All extracted information is not relevant for analysis

» However, structural information is systematically extracted

® Need a flexible way to analyse source: Perspectives

» Based on a dictionary of remarkable elements

» Set of transformations

¢

NC N R
Dealing with Perspectives

o All extracted information is not relevant for analysis

» However, structural information is systematically extracted

® Need a flexible way to analyse source: Perspectives

» Based on a dictionary of remarkable elements

» Set of transformations

Source Code :> @m
bﬂfx N

Perspective’s definition (xML)

NC N R
Dealing with Perspectives

o All extracted information is not relevant for analysis

» However, structural information is systematically extracted

® Need a flexible way to analyse source: Perspectives

» Based on a dictionary of remarkable elements

» Set of transformations

Source Code @m
=> @™
thread information set

oo amm

Perspective’s definition (xML)

"

Cas%' o
Perspectives & Philosophers

Perspective’s descriptions (XML)

Source Code

void * philosopher () {
int £;
printf("Philo is sitting down to dinner.\n");
while((f = food on table())) {
pthread mutex lock(&fork left);
pthread mutex lock(&fork right);
printf("Philo is eating.\n");
pthread mutex unlock(&fork right);
pthread mutex unlock(&fork left);
}
printf("Philo is done eating.\n");
pthread exit (NULL);

Perspectives & Philosophers

;3 Function philosopher
BLOCK 2
PRED:ENTRY(fallthru)
printf(&"Philosopher
goto <bb 4> (<L1>);
SUCC:4(fallthru)
BLOCK 3
PRED: 4 (true)
pthread mutex lock(&fork3);
pthread mutex lock(&forkl);
printf(&"Philosopher
pthread mutex unlock(&fork3);
pthread mutex unlock(&forkl);
SUCC:4(fallthru)
BLOCK 4
PRED:2(fallthru) 3(fallthru)
D.3892 = food on table();
f = D.3892;
if (£ != 0) goto <L0>;
else goto <L2>;
SUCC:3(true) 5(false)
BLOCK 5
PRED:4 (false)
printf(&"Philosopher
pthread exit (0B);
SUCC:EXIT

Perspective’s descriptions (XML)

0O o Ul W IN K

P PR R P RRRPR R RO
O 00 O U WNKFE O -

Perspectives & Philosophers

; 7 Function philosopher
BLOCK 2

PRED:ENTRY(fallthru)
printf(&"Philosopher
goto <bb 4> (<L1>);

SucC:4(fallthru)

BLOCK 3

PRED: 4 (true)
pthread mutex lock(&fork3);
pthread mutex lock(&forkl);
printf(&"Philosopher
pthread mutex unlock(&fork3);
pthread mutex unlock(&forkl);

SUCC:4(fallthru)

BLOCK 4

PRED:2(fallthru) 3 (fallthru)
D.3892 = food on_ table();
f = D.3892;
if (£ != 0) goto <L0>;
else goto <L2>;

SUCC:3(true) 5(false)

BLOCK 5

PRED:4 (false)
printf(&"Philosopher
pthread exit (0B);

SUCC:EXIT

Perspective’s descriptions (XML)

0O o Ul W IN K

R = =R
W NP O

e e
O 0 J oUW

Perspectives & Philosophers

;3 Function philosopher
BLOCK 2
PRED:ENTRY(fallthru)
printf(&"Philosopher
goto <bb 4> (<L1>);
SUCC:4(fallthru)
BLOCK 3
PRED: 4 (true)
pthread mutex_ lock(&fork3);
pthread mutex_ lock(&forkl);
printf(&"Philosopher
pthread mutex unlock(&fork3);
pthread mutex unlock(&forkl);
SUCC:4(fallthru)
BLOCK 4
PRED:2(fallthru) 3(fallthru)
D.3892 = food on table();
f = D.3892;
if (£ != 0) goto <L0>;
else goto <L2>;
SUCC:3(true) 5(false)
BLOCK 5
PRED:4 (false)
printf(&"Philosopher
pthread_exit (OB);
SUCC:EXIT

Perspective’s descriptions (XML)

0O o Ul W IN K

R = =R
W NP O

e e
O 0 J oUW

Perspectives & Philosophers

;3 Function philosopher
BLOCK 2
PRED:ENTRY(fallthru)
printf (&"Philosopher ...
goto <bb 4> (<L1>);
SUCC:4(fallthru)
BLOCK 3
PRED: 4 (true)
pthread mutex lock(&fork3);
pthread mutex lock(&forkl);
printf (&"Philosopher ...
pthread mutex unlock(&fork3);
pthread mutex unlock(&forkl);
SUCC:4(fallthru)
BLOCK 4
PRED:2(fallthru) 3(fallthru)
D.3892 = food on table();
f = D.3892;
if (£ != 0) goto <L0>;
else goto <L2>;
SUCC:3(true) 5(false)
. # BLOCK 5
Builder . # PRED:4 (false)
printf (&"Philosopher...
pthread exit (0B);
SUCC:EXIT

Perspective’s descriptions (XML)

0O o Ul W IN K

e e e e
U W N R O

Thread set

e
O 0 J O

Building (small) Petri Nets

® Production rules : Source to Petri net patterns

» Each perspective comes with its own production rules
- 7/ rules to build the structural model

- 6 for Thread perspective / 6 for Process Management perspective

e Each information set is transformed into a Petri net

» Struct information set gives Structural Model

» Others give submodels to be plugged to the structural one

Phllos’R’Nets (still small)

7P

Philos’R'Nets (still small)

*
.

‘e

“lllllllllllxrllll..
a
[
| 3_|3:
. .
]
pe .‘ Quunns
a

% fork I

¢ st
“‘IIIIIIIIIIIIIIIIII...“-II..‘=
dg
13 _10:-
"llll:' ’,
’0
. —

*

0‘.
EEEEEN IIII....
‘
Vﬁ,\ :R
<
V o

-IIIIIIIIIIII...

sapnsnnsnnnnnns

IS *
.....................-‘

..lllllllllll

L
*yusssnnunnnns®

Sy gepEEEEgEEEm®

Q

Syussunnunnnns®

L .
®aypgpmnmnn®

Building (big) Petri Nets

® Merge all subnets into the structural model

» Find the right order thanks to the ECFG metadata
» Traceability of the origin of Petri nets elements

» Manage all specificities of Petri nets to produce correct nets
- Color classes / Color domains

- Initial marking

® One net for each “main” function

» Potentially several nets for large applications

- When composed of several executables (start / stop / status...)

7P

One philosopher...

0_Entry

struct_0_entry_2 ?

0_2_1_pre th_0_3_9_lock
=== [v=free]

sys_0_2_|_printf

[printf] 0_3_10_pre

[v=free]

0_2_I_post 0_3_I1_pre <lock>

struct_ 0_4 3 th_0_3_10_lock
struct 0_2 4 _U_4_ 0.3 12 pre

[printf] C—1>
0_5_23_pre 4—” 0 4 sys_0_3_ 11 _printf

sys_0_5_23_printf struct 0_4_5 \\ th_0_3_12_unlock
== [|_3rintf] ? struct_0_3_4
0_3_13_pre

0_5_23 post
th_ 0 3 1|3 unlock
<free>

struct._0_5_exit ?
O 0_3_13_post

0_Exit

7P

One philosopher...

o_EntryQ Use of standard structural reductions

struct_0_entry 2 ? 0_3_9_pre

0_2_1_pre th_0_3_9_lock
=== [v=free]

sys_0_2_|_printf
[printf] 0 3 | 0_pre @
[v=free] lock>

0_2_1_post 0_3_1I1_pre

th_0_3_ 10 _lock
struct. 0_4_3
struct_0_2_4 0_3_12_pre

[printf] C—1>
0_5_23_pre Q{—D 0 4 sys_0_3_ 11 _printf

sys_0_5_23_printf struct 0_4_5 \\ th_0_3_12_unlock
== [|_3rintf] ? struct_0_3_4
0_3_13_pre 9

0_5_23 post
th_ 0 3 1|3 unlock
<free>

struct._0_5_exit ?
O 0_3_ | 3_P0$t

0_Exit

0% Vem”
One philosopher...

0_Entry Use of standard structural reductions

struct_0_entry 2 T 0_3_9_pre

0_2_1_pre th_0_3_9_lock
=== [v=free]
sys_0_2_|_printf
[printf] 0_3_10_pre

v=free
0_2_1I_post 0_3_II_pre [] <lock>

struct_ 0_4 3 th_0_3_10_lock
struct 0_2 4 _U_4_ 0.3 12 pre

[printf] C—1->
0_5_23 pre o 4 sys_0_3_11_printf

th_0_3_12_unlock
SyS_0_5_23_printf Struct 045 l \
struct_0_3_4

[printf]
0_3_13_pre
0_5_23 post
th_ 0 3 13 unlock
<free>

R @® cannot be optimized
0_3_13_post cannot be optimized

@ cligible for optimization

Offline Analysis

® Some basic properties can be checked before runtime

® Structural properties

» Dead code / Infinite loops

® Reachability properties
» Dead code / Deadlock

® Causal properties

» Starvation / Race Condition

» User-specified:“Can a read occurs on a file after | closed it”

14

From Models to Monitor

® Obijective : building a dedicated program monitor

System Call &

From Models to Monitor

® Obijective : building a dedicated program monitor

Raise alarm when bad
behaviors occur !

Monitor
System Call % E :
. T

From Models to Monitor

® Obijective : building a dedicated program monitor

Raise alarm when bad
behaviors occur !

1t

From Models to Monitor

® Obijective : building a dedicated program monitor

Raise alarm when bad
behaviors occur !

1t

v Embed the Petri net built during previous phase

From Models to Monitor

® Obijective : building a dedicated program monitor

Raise alarm when bad
behaviors occur !

v Embed the Petri net built during previous phase

From Models to Monitor

® Obijective : building a dedicated program monitor

System Call

Raise alarm when bad System Call DR

behaviors occur !
Sensors

v Embed the Petri net built during previous phase
v Catch events related to the program execution

From Models to Monitor

® Obijective : building a dedicated program monitor

System Call

Raise alarm when bad
behaviors occur !

1t

System Call Systezn Call

&

v Embed the Petri net built during previous phase
v Catch events related to the program execution

v Compare real events to expected events

Playing with Nets

e All transitions can consume tokens from pool place

® Execution is divided into rounds
» Catching an event = beginning of a round
» When the pool place is empty = end of a round

» The pool place must be empty before beginning a new round

Playing with Nets

e All transitions can consume tokens from pool place

® Execution is divided into rounds
» Catching an event = beginning of a round
» When the pool place is empty = end of a round

» The pool place must be empty before beginning a new round

Playing with Nets

e All transitions can consume tokens from pool place

® Execution is divided into rounds
» Catching an event = beginning of a round
» When the pool place is empty = end of a round

» The pool place must be empty before beginning a new round

Playing with Nets

e All transitions can consume tokens from pool place

® Execution is divided into rounds
» Catching an event = beginning of a round
» When the pool place is empty = end of a round

» The pool place must be empty before beginning a new round

Playing with Nets

e All transitions can consume tokens from pool place

® Execution is divided into rounds
» Catching an event = beginning of a round
» When the pool place is empty = end of a round

» The pool place must be empty before beginning a new round

Playing with Nets

e All transitions can consume tokens from pool place

® Execution is divided into rounds
» Catching an event = beginning of a round
» When the pool place is empty = end of a round

» The pool place must be empty before beginning a new round

Playing with Nets

e All transitions can consume tokens from pool place

® Execution is divided into rounds
» Catching an event = beginning of a round
» When the pool place is empty = end of a round

» The pool place must be empty before beginning a new round

Playing with Nets

e All transitions can consume tokens from pool place

® Execution is divided into rounds
» Catching an event = beginning of a round
» When the pool place is empty = end of a round

» The pool place must be empty before beginning a new round

Playing with Nets & Stack !

® Not sufficient to handle mimicry attacks

» Attacks that mimic a correct behavior but doing “bad things”

- System call sequence of these attacks is correct

- Introduce anomalies into call stack

Playing with Nets & Stack !

® Not sufficient to handle mimicry attacks

» Attacks that mimic a correct behavior but doing “bad things”

- System call sequence of these attacks is correct

- Introduce anomalies into call stack

Current Stack State

0_Entry [open]

Playing with Nets & Stack !

® Not sufficient to handle mimicry attacks

» Attacks that mimic a correct behavior but doing “bad things”

- System call sequence of these attacks is correct

- Introduce anomalies into call stack

Current Stack State

[read] [write] [close]
- -

Playing with Nets & Stack !

® Not sufficient to handle mimicry attacks

» Attacks that mimic a correct behavior but doing “bad things”

- System call sequence of these attacks is correct

- Introduce anomalies into call stack

[read] [write] [close]
- -

Playing with Nets & Stack !

® Not sufficient to handle mimicry attacks

» Attacks that mimic a correct behavior but doing “bad things”

- System call sequence of these attacks is correct

- Introduce anomalies into call stack

[read] [write] [close]
- -

Playing with Nets & Stack !

® Not sufficient to handle mimicry attacks

» Attacks that mimic a correct behavior but doing “bad things”

- System call sequence of these attacks is correct

- Introduce anomalies into call stack

[read] [write] [close]
- -

Playing with Nets & Stack !

® Not sufficient to handle mimicry attacks

» Attacks that mimic a correct behavior but doing “bad things”

- System call sequence of these attacks is correct

- Introduce anomalies into call stack

Current Stack State

Return adress
has been replaced
during the attack !

Playing with Nets & Stack !

® Not sufficient to handle mimicry attacks

» Attacks that mimic a correct behavior but doing “bad things”

- System call sequence of these attacks is correct

- Introduce anomalies into call stack

Current Stack State

Return adress
has been replaced
during the attack !

Playing with Nets & Stack !

® Not sufficient to handle mimicry attacks

» Attacks that mimic a correct behavior but doing “bad things”

- System call sequence of these attacks is correct

- Introduce anomalies into call stack

Current Stack State

Return adress
has been replaced
during the attack !

Implementation: Evinrude

¢ Needs GCC
.0 Written in Java

¢ Provide flexibility API
. Multi-platform
:e Well known by engineers

Implementation: Evinrude

‘e Needs GCC
;0 Written in Java

 GUI for CPN-AMI platform
- View / Edit / Save models

« Provide flexibility AP
.o Multi-platform
. Well known by engineers

Implementation: Evinrude

‘e Needs GCC
;0 Written in Java

 GUI for CPN-AMI platform
- View / Edit / Save models

-® Provide flexibility API

e Multi-platform 5

» Well known by engineers :e Check Petri nets syntax
¢ Allow offline analysis

Implementation: Evinrude

‘e Needs GCC
50 Written in Java

 GUI for CPN-AM| platform
¢ View / Edit / Save models

« Provide flexibility AP
.o Multi-platform
. Well known by engineers

' Dynamic Library
e LD_PRELOAD f
» Export before run

. Check Petri nets syntax
¢ Allow offline analysis

Conclusion

® Automatic construction of a program dedicated IDS
® Select subset of information: Perspective mechanism

® Use the same model for both offline & online analysis

» WYCIWYC :What You’ve Checked is What You’ll Check

® Evinrude has already produced models for:

Before reduction After reduction
GZip 842 / 1119 7/ 2406 149 / 165 / 498

Wu-FTPD 4132 /5331 /7 11754 829 /963 / 3018

LigHTTPd 3403 / 4264 / 8399 | 673/ 761 / 2392

places / transitions / arcs

Questions ?

® Thank you for your attention...

