
“Evinrude”

How to build a
Petri Net-Based IDS 

from 
Program Sources 

MeFoSyLoMa Meeting
Jean-Baptiste Voron - LIP6 (UPMC)

Fabrice Kordon - LIP6 (UPMC)

Liviu Iftode - DiscoLab (Rutgers University)

December 5th, 2008 - Version 1.3b



Context: Intrusion Detection

2

Computer System
(network / program / OS)

• Signature-based detection (misuse detection)

• Behavior-based detection (anomaly detection)

‣ Looking for deviations from an “expected behavior”

‣ Limitation: parallel and distributed programs 



Context: Intrusion Detection

2

Computer System
(network / program / OS)

• Signature-based detection (misuse detection)

• Behavior-based detection (anomaly detection)

‣ Looking for deviations from an “expected behavior”

‣ Limitation: parallel and distributed programs 



Events

Events

Events

Events

Context: Intrusion Detection

2

IDS
Computer System
(network / program / OS)

• Signature-based detection (misuse detection)

• Behavior-based detection (anomaly detection)

‣ Looking for deviations from an “expected behavior”

‣ Limitation: parallel and distributed programs 



Events

Events

Events

Events

Context: Intrusion Detection

2

IDS
Computer System
(network / program / OS)

• Signature-based detection (misuse detection)

• Behavior-based detection (anomaly detection)

‣ Looking for deviations from an “expected behavior”

‣ Limitation: parallel and distributed programs 

Event



Events

Events

Events

Events

Context: Intrusion Detection

2

IDS
Computer System
(network / program / OS)

• Signature-based detection (misuse detection)

• Behavior-based detection (anomaly detection)

‣ Looking for deviations from an “expected behavior”

‣ Limitation: parallel and distributed programs 

Expected Behavior



Approach & Choices
• Build an Intrusion Detection System (IDS)

‣ Dedicated to a program & Behavior based

• Handle large and complex programs

‣ C programs (real-life programs)

‣ Multi Processes / Multi Threaded programs

3

1 2

Program Program’s Behavior Intrusion Detection System



Approach & Choices

4

• Behavior modeling relies on Petri nets

‣ Used as state-space generators

• Construction process is fully automatic

‣ IDS is produced from program sources

‣ No formal background required for developers

‣ No code instrumentation (neither source nor binary)

• Hypothesis

‣ Operating System is considered healthy



From programs to models

5

• Several steps are required to produce a model

‣ Extract (relevant) information

‣ Transform it into Petri nets

‣ Optimize the net in order to produce the smallest one 

inside(...) 
{   if (...) 

{ write; } else 
{ close; } if 
(unlink) 

C
;; 

function 
beaphilo # 

Block 0 : pred 
Entry, 2, 3 D.

1209 = 

CFO Petri net
Offline Analysis

Petri net

Builder OptimizationParser



From programs to models

5

• Several steps are required to produce a model

‣ Extract (relevant) information

‣ Transform it into Petri nets

‣ Optimize the net in order to produce the smallest one 

inside(...) 
{   if (...) 

{ write; } else 
{ close; } if 
(unlink) 

C
;; 

function 
beaphilo # 

Block 0 : pred 
Entry, 2, 3 D.

1209 = 

CFO Petri net
Offline Analysis

Petri net

Builder Optimization

Code Generation

Monitor

Online Analysis

Parser



Monitoring Philosophers...

6

• ... is pretty hard with standard IDS !

• Multi-threaded version

‣ Pthread library calls

- Thread Management

- Thread Synchronization



Monitoring Philosophers...

6

• ... is pretty hard with standard IDS !

• Multi-threaded version

‣ Pthread library calls

- Thread Management

- Thread Synchronization

int m
ain (

int a
rgn, 

char 
**arg

v) {

 pthr
ead_m

utex_
init(

&food
lock,

NULL)
;

 // F
orks.

..

 for 
(i = 

0; i 
< PHI

LO; i
++) {

  pth
read_

mutex
_init

(&for
k[i],

NULL)
;

  pth
read_

creat
e(&p[

i],NU
LL,ph

iloso
pher,

NULL)
;

 }

 for 
(i = 

0; i 
< PHI

LO; i
++) {

 

  pth
read_

join(
p[i],

NULL)
;

 }



Monitoring Philosophers...

6

• ... is pretty hard with standard IDS !

• Multi-threaded version

‣ Pthread library calls

- Thread Management

- Thread Synchronization

int m
ain (

int a
rgn, 

char 
**arg

v) {

 pthr
ead_m

utex_
init(

&food
lock,

NULL)
;

 // F
orks.

..

 for 
(i = 

0; i 
< PHI

LO; i
++) {

  pth
read_

mutex
_init

(&for
k[i],

NULL)
;

  pth
read_

creat
e(&p[

i],NU
LL,ph

iloso
pher,

NULL)
;

 }

 for 
(i = 

0; i 
< PHI

LO; i
++) {

 

  pth
read_

join(
p[i],

NULL)
;

 }

void * philosopher () {

 int f; printf("Philo is sitting down to dinner.\n");

 while((f = food_on_table())) {

  pthread_mutex_lock(&fork_left);

  pthread_mutex_lock(&fork_right);

  printf("Philo is eating.\n");

  pthread_mutex_unlock(&fork_right);

  pthread_mutex_unlock(&fork_left);

 }
 printf("Philo is done eating.\n");

 pthread_exit(NULL);

}



Monitoring Philosophers...

6

• ... is pretty hard with standard IDS !

• Multi-threaded version

‣ Pthread library calls

- Thread Management

- Thread Synchronization

int m
ain (

int a
rgn, 

char 
**arg

v) {

 pthr
ead_m

utex_
init(

&food
lock,

NULL)
;

 // F
orks.

..

 for 
(i = 

0; i 
< PHI

LO; i
++) {

  pth
read_

mutex
_init

(&for
k[i],

NULL)
;

  pth
read_

creat
e(&p[

i],NU
LL,ph

iloso
pher,

NULL)
;

 }

 for 
(i = 

0; i 
< PHI

LO; i
++) {

 

  pth
read_

join(
p[i],

NULL)
;

 }

void * philosopher () {

 int f; printf("Philo is sitting down to dinner.\n");

 while((f = food_on_table())) {

  pthread_mutex_lock(&fork_left);

  pthread_mutex_lock(&fork_right);

  printf("Philo is eating.\n");

  pthread_mutex_unlock(&fork_right);

  pthread_mutex_unlock(&fork_left);

 }
 printf("Philo is done eating.\n");

 pthread_exit(NULL);

}

int food_on_table () { static int food = FOOD; int myfood;

 pthread_mutex_lock(&foodlock); if (food > 0) { food--; } myfood = food;
 pthread_mutex_unlock (&foodlock); return myfood;
}



Extracting Information

• Use of GCC to extract information

‣ During the compilation

‣ No need to modify the MakeFile (just set ENV variable)

‣ Use of Extended Control Flow Graph (ECFG)

7

GCCSource Code

TU

CFG

GPL

CFG Parser

Parser module

Control Flow Objects

PNCFOC

Parser Builder Optimizer

PN



Dealing with Perspectives
• All extracted information is not relevant for analysis

‣ However, structural information is systematically extracted

• Need a flexible way to analyse source: Perspectives

‣ Based on a dictionary of remarkable elements

‣ Set of transformations 

8

CFG ParserSource Code
GCC

PNCFOC

Parser Builder Optimizer

PN



Dealing with Perspectives
• All extracted information is not relevant for analysis

‣ However, structural information is systematically extracted

• Need a flexible way to analyse source: Perspectives

‣ Based on a dictionary of remarkable elements

‣ Set of transformations 

8

CFG Parser
struct information set

St

Source Code
GCC

PNCFOC

Parser Builder Optimizer

PN



Dealing with Perspectives
• All extracted information is not relevant for analysis

‣ However, structural information is systematically extracted

• Need a flexible way to analyse source: Perspectives

‣ Based on a dictionary of remarkable elements

‣ Set of transformations 

8

CFG Parser
struct information set

thread information set

syscall information setSt Th Sy

Perspective’s definition (XML)

Source Code
GCC

PNCFOC

Parser Builder Optimizer

PN



Builder

Dealing with Perspectives
• All extracted information is not relevant for analysis

‣ However, structural information is systematically extracted

• Need a flexible way to analyse source: Perspectives

‣ Based on a dictionary of remarkable elements

‣ Set of transformations 

8

CFG Parser
struct information set

thread information set

syscall information setSt Th Sy

Perspective’s definition (XML)

Source Code
GCC

PNCFOC

Parser Builder Optimizer

PN



Perspectives & Philosophers

9

ThSt Sy

void * philosopher () {
 int f;
 printf("Philo is sitting down to dinner.\n");
 while((f = food_on_table())) {
  pthread_mutex_lock(&fork_left);
  pthread_mutex_lock(&fork_right);
  printf("Philo is eating.\n");
  pthread_mutex_unlock(&fork_right);
  pthread_mutex_unlock(&fork_left);
 }
 printf("Philo is done eating.\n");
 pthread_exit(NULL);
}

CFG Parser
GCC

Perspective’s descriptions (XML)

Source Code

PNCFOC

Parser Builder Optimizer

PN



1.   ;; Function philosopher
2.   # BLOCK 2
3.     # PRED:ENTRY(fallthru)
4.      printf(&"Philosopher ...
5.      goto <bb 4> (<L1>);
6.     # SUCC:4(fallthru)
7.   # BLOCK 3
8.     # PRED: 4 (true)
9.      pthread_mutex_lock(&fork3);
10.     pthread_mutex_lock(&fork1);
11.     printf(&"Philosopher ...
12.     pthread_mutex_unlock(&fork3);
13.     pthread_mutex_unlock(&fork1);
14.    # SUCC:4(fallthru)
15.  # BLOCK 4
16.    # PRED:2(fallthru) 3(fallthru)
17.     D.3892 = food_on_table();
18.     f = D.3892;
19.     if (f != 0) goto <L0>;
        else goto <L2>;
20.    # SUCC:3(true) 5(false)
21.  # BLOCK 5
22.    # PRED:4(false)
23.     printf(&"Philosopher ...
24.     pthread_exit (0B);
25.    # SUCC:EXIT

Perspectives & Philosophers

9

ThSt Sy

CFG Parser
GCC

Perspective’s descriptions (XML)

Source Code

ECFG

PNCFOC

Parser Builder Optimizer

PN



1.   ;; Function philosopher
2.   # BLOCK 2
3.     # PRED:ENTRY(fallthru)
4.      printf(&"Philosopher ...
5.      goto <bb 4> (<L1>);
6.     # SUCC:4(fallthru)
7.   # BLOCK 3
8.     # PRED: 4 (true)
9.      pthread_mutex_lock(&fork3);
10.     pthread_mutex_lock(&fork1);
11.     printf(&"Philosopher ...
12.     pthread_mutex_unlock(&fork3);
13.     pthread_mutex_unlock(&fork1);
14.    # SUCC:4(fallthru)
15.  # BLOCK 4
16.    # PRED:2(fallthru) 3(fallthru)
17.     D.3892 = food_on_table();
18.     f = D.3892;
19.     if (f != 0) goto <L0>;
        else goto <L2>;
20.    # SUCC:3(true) 5(false)
21.  # BLOCK 5
22.    # PRED:4(false)
23.     printf(&"Philosopher ...
24.     pthread_exit (0B);
25.    # SUCC:EXIT

Perspectives & Philosophers

9

ThSt Sy

CFG Parser
GCC

Perspective’s descriptions (XML)

Source Code

Struct set

PNCFOC

Parser Builder Optimizer

PN



1.   ;; Function philosopher
2.   # BLOCK 2
3.     # PRED:ENTRY(fallthru)
4.      printf(&"Philosopher ...
5.      goto <bb 4> (<L1>);
6.     # SUCC:4(fallthru)
7.   # BLOCK 3
8.     # PRED: 4 (true)
9.      pthread_mutex_lock(&fork3);
10.     pthread_mutex_lock(&fork1);
11.     printf(&"Philosopher ...
12.     pthread_mutex_unlock(&fork3);
13.     pthread_mutex_unlock(&fork1);
14.    # SUCC:4(fallthru)
15.  # BLOCK 4
16.    # PRED:2(fallthru) 3(fallthru)
17.     D.3892 = food_on_table();
18.     f = D.3892;
19.     if (f != 0) goto <L0>;
        else goto <L2>;
20.    # SUCC:3(true) 5(false)
21.  # BLOCK 5
22.    # PRED:4(false)
23.     printf(&"Philosopher ...
24.     pthread_exit (0B);
25.    # SUCC:EXIT

Perspectives & Philosophers

9

ThSt Sy

CFG Parser
GCC

Perspective’s descriptions (XML)

Source Code

Struct set

Thread set

PNCFOC

Parser Builder Optimizer

PN



1.   ;; Function philosopher
2.   # BLOCK 2
3.     # PRED:ENTRY(fallthru)
4.      printf(&"Philosopher ...
5.      goto <bb 4> (<L1>);
6.     # SUCC:4(fallthru)
7.   # BLOCK 3
8.     # PRED: 4 (true)
9.      pthread_mutex_lock(&fork3);
10.     pthread_mutex_lock(&fork1);
11.     printf(&"Philosopher ...
12.     pthread_mutex_unlock(&fork3);
13.     pthread_mutex_unlock(&fork1);
14.    # SUCC:4(fallthru)
15.  # BLOCK 4
16.    # PRED:2(fallthru) 3(fallthru)
17.     D.3892 = food_on_table();
18.     f = D.3892;
19.     if (f != 0) goto <L0>;
        else goto <L2>;
20.    # SUCC:3(true) 5(false)
21.  # BLOCK 5
22.    # PRED:4(false)
23.     printf(&"Philosopher...
24.     pthread_exit (0B);
25.    # SUCC:EXIT

Perspectives & Philosophers

9

Builder

ThSt Sy

CFG Parser
GCC

Perspective’s descriptions (XML)

Source Code

Struct set

Thread set

Syscall set

PNCFOC

Parser Builder Optimizer

PN



Building (small) Petri Nets

• Production rules : Source to Petri net patterns

‣ Each perspective comes with its own production rules

- 7 rules to build the structural model

- 6 for Thread perspective / 6 for Process Management perspective

• Each information set is transformed into a Petri net

‣ Struct information set gives Structural Model

‣ Others give submodels to be plugged to the structural one

10

PNCFOC

Parser Builder Optimizer

PN



Philos’R’Nets (still small)

11

Entry

Exit

4

3
5

2

PNCFOC

Parser Builder Optimizer

PN

Struct Model



Philos’R’Nets (still small)

11

[printf]

2_1

[printf]

5_23

Entry

Exit

4

3
5

2

[printf]

3_11

PNCFOC

Parser Builder Optimizer

PN

Syscall Models



Philos’R’Nets (still small)

11

[printf]

2_1

[printf]

5_23

Entry

Exit

4

3
5

fork_3
<v>

<free>

3_12

2

[printf]

3_11

fork_1
<v>

<lock>[v=free]

3_9

3_10

fork_3
<v>

<lock>[v=free]

fork_1

<free>

3_13

<v>

PNCFOC

Parser Builder Optimizer

PN

Thread Models



Building (big) Petri Nets
• Merge all subnets into the structural model

‣ Find the right order thanks to the ECFG metadata

‣ Traceability of the origin of Petri nets elements

‣ Manage all specificities of Petri nets to produce correct nets

- Color classes / Color domains

- Initial marking

• One net for each “main” function

‣ Potentially several nets for large applications

- When composed of several executables (start / stop / status...)
12

PNCFOC

Parser Builder Optimizer

PN



One philosopher...

13

[printf]

0_Entry

0_Exit

0_4

fork_3

<v>

<free>

<v>

<lock>[v=free]

<v>

<lock>[v=free]

fork_1

<free>

<v>

PNCFOC

Parser Builder Optimizer

PN

[printf]

0_2_1_pre

0_2_1_post

struct_0_2_4

struct_0_entry_2

[printf]

0_5_23_pre

0_5_23_post

sys_0_5_23_printf

sys_0_2_1_printf

struct_0_5_exit

0_3_9_pre

th_0_3_9_lock

th_0_3_10_lock

0_3_10_pre

0_3_11_pre

sys_0_3_11_printf

0_3_13_pre

th_0_3_13_unlock

th_0_3_12_unlock

0_3_12_pre

struct_0_3_4

struct_0_4_3

0_3_13_post

struct_0_4_5



One philosopher...

13

[printf]

0_Entry

0_Exit

0_4

fork_3

<v>

<free>

<v>

<lock>[v=free]

<v>

<lock>[v=free]

fork_1

<free>

<v>

PNCFOC

Parser Builder Optimizer

PN

[printf]

0_2_1_pre

0_2_1_post

struct_0_2_4

struct_0_entry_2

[printf]

0_5_23_pre

0_5_23_post

sys_0_5_23_printf

sys_0_2_1_printf

struct_0_5_exit

0_3_9_pre

th_0_3_9_lock

th_0_3_10_lock

0_3_10_pre

0_3_11_pre

sys_0_3_11_printf

0_3_13_pre

th_0_3_13_unlock

th_0_3_12_unlock

0_3_12_pre

struct_0_3_4

struct_0_4_3

0_3_13_post

struct_0_4_5

Use of standard structural reductions



One philosopher...

13

[printf]

0_Entry

0_Exit

0_4

fork_3

<v>

<free>

<v>

<lock>[v=free]

<v>

<lock>[v=free]

fork_1

<free>

<v>

PNCFOC

Parser Builder Optimizer

PN

[printf]

0_2_1_pre

0_2_1_post

struct_0_2_4

struct_0_entry_2

[printf]

0_5_23_pre

0_5_23_post

sys_0_5_23_printf

sys_0_2_1_printf

struct_0_5_exit

0_3_9_pre

th_0_3_9_lock

th_0_3_10_lock

0_3_10_pre

0_3_11_pre

sys_0_3_11_printf

0_3_13_pre

th_0_3_13_unlock

th_0_3_12_unlock

0_3_12_pre

struct_0_3_4

struct_0_4_3

0_3_13_post

struct_0_4_5

cannot be optimized
cannot be optimized
eligible for optimization

Use of standard structural reductions



Offline Analysis

• Some basic properties can be checked before runtime

• Structural properties

‣ Dead code / Infinite loops

• Reachability properties

‣ Dead code / Deadlock

• Causal properties

‣ Starvation / Race Condition

‣ User-specified: “Can a read occurs on a file after I closed it”
14

PNCFOC

Parser Builder Optimizer

PN



From Models to Monitor
• Objective : building a dedicated program monitor

15

System

Process

U
se

r

System Call

Ke
rn

el



From Models to Monitor
• Objective : building a dedicated program monitor

15

System

Process
Monitor

U
se

r

Raise alarm when bad 
behaviors occur !

System Call

Ke
rn

el



From Models to Monitor
• Objective : building a dedicated program monitor

15

System

Process
Monitor

U
se

r

Raise alarm when bad 
behaviors occur !

System Call

Ke
rn

el



From Models to Monitor
• Objective : building a dedicated program monitor

15

System

Process
Monitor

U
se

r

Behavior Container States Container3

Raise alarm when bad 
behaviors occur !

System Call

Ke
rn

el

✓Embed the Petri net built during previous phase



From Models to Monitor
• Objective : building a dedicated program monitor

15

System

Process
Monitor

U
se

r

Sensors1

Behavior Container States Container3

Raise alarm when bad 
behaviors occur !

System Call

Ke
rn

el

✓Embed the Petri net built during previous phase



From Models to Monitor
• Objective : building a dedicated program monitor

15

System

Process
Monitor

U
se

r

Sensors

System Call

1

Behavior Container States Container3

Raise alarm when bad 
behaviors occur !

System Call
System Call

System Call

Ke
rn

el

✓Catch events related to the program execution
✓Embed the Petri net built during previous phase



From Models to Monitor
• Objective : building a dedicated program monitor

15

System

Process
Monitor

U
se

r

Sensors

System Call

1

2

Behavior Container States Container3

Raise alarm when bad 
behaviors occur !

System Call
System Call

Firing Manager

System Call

Ke
rn

el

✓Catch events related to the program execution
✓Embed the Petri net built during previous phase

✓Compare real events to expected events



Playing with Nets
•  All transitions can consume tokens from pool place

• Execution is divided into rounds

‣ Catching an event = beginning of a round

‣ When the pool place is empty = end of a round

‣ The pool place must be empty before beginning a new round

16

0_Entry [open]

[read]

[exit]

[write] [close]

0_2

0_Exit

0_4 0_5 0_6

[exit]

Pool place Event Color

open “o”

read “r”

write “w”

close “c”

exit “e”



Playing with Nets
•  All transitions can consume tokens from pool place

• Execution is divided into rounds

‣ Catching an event = beginning of a round

‣ When the pool place is empty = end of a round

‣ The pool place must be empty before beginning a new round

16

0_Entry [open]

[read]

[exit]

[write] [close]

0_2

0_Exit

0_4 0_5 0_6

[exit]

Pool place Event Color

open “o”

read “r”

write “w”

close “c”

exit “e”



Playing with Nets
•  All transitions can consume tokens from pool place

• Execution is divided into rounds

‣ Catching an event = beginning of a round

‣ When the pool place is empty = end of a round

‣ The pool place must be empty before beginning a new round

16

0_Entry [open]

[read]

[exit]

[write] [close]

0_2

0_Exit

0_4 0_5 0_6

[exit]

Pool place Event Color

open “o”

read “r”

write “w”

close “c”

exit “e”

o



Playing with Nets
•  All transitions can consume tokens from pool place

• Execution is divided into rounds

‣ Catching an event = beginning of a round

‣ When the pool place is empty = end of a round

‣ The pool place must be empty before beginning a new round

16

0_Entry [open]

[read]

[exit]

[write] [close]

0_2

0_Exit

0_4 0_5 0_6

[exit]

Pool place Event Color

open “o”

read “r”

write “w”

close “c”

exit “e”



Playing with Nets
•  All transitions can consume tokens from pool place

• Execution is divided into rounds

‣ Catching an event = beginning of a round

‣ When the pool place is empty = end of a round

‣ The pool place must be empty before beginning a new round

16

0_Entry [open]

[read]

[exit]

[write] [close]

0_2

0_Exit

0_4 0_5 0_6

[exit]

Pool place Event Color

open “o”

read “r”

write “w”

close “c”

exit “e”

r



Playing with Nets
•  All transitions can consume tokens from pool place

• Execution is divided into rounds

‣ Catching an event = beginning of a round

‣ When the pool place is empty = end of a round

‣ The pool place must be empty before beginning a new round

16

0_Entry [open]

[read]

[exit]

[write] [close]

0_2

0_Exit

0_4 0_5 0_6

[exit]

Pool place Event Color

open “o”

read “r”

write “w”

close “c”

exit “e”



Playing with Nets
•  All transitions can consume tokens from pool place

• Execution is divided into rounds

‣ Catching an event = beginning of a round

‣ When the pool place is empty = end of a round

‣ The pool place must be empty before beginning a new round

16

0_Entry [open]

[read]

[exit]

[write] [close]

0_2

0_Exit

0_4 0_5 0_6

[exit]

Pool place Event Color

open “o”

read “r”

write “w”

close “c”

exit “e”

o



Playing with Nets
•  All transitions can consume tokens from pool place

• Execution is divided into rounds

‣ Catching an event = beginning of a round

‣ When the pool place is empty = end of a round

‣ The pool place must be empty before beginning a new round

16

0_Entry [open]

[read]

[exit]

[write] [close]

0_2

0_Exit

0_4 0_5 0_6

[exit]

Pool place Event Color

open “o”

read “r”

write “w”

close “c”

exit “e”

o
!



Playing with Nets & Stack !
• Not sufficient to handle mimicry attacks

‣ Attacks that mimic a correct behavior but doing “bad things”

- System call sequence of these attacks is correct

- Introduce anomalies into call stack

17

0_Entry [open]

[read]

[exit]

[write] [close]

0_2

0_Exit

0_4 0_5 0_6

[exit]

Pool place

Event Color

open “o”

read “r”

write “w”

close “c”

exit “e”



Playing with Nets & Stack !
• Not sufficient to handle mimicry attacks

‣ Attacks that mimic a correct behavior but doing “bad things”

- System call sequence of these attacks is correct

- Introduce anomalies into call stack

17

0_Entry [open]

[read]

[exit]

[write] [close]

0_2

0_Exit

0_4 0_5 0_6

[exit]

Pool place

Event Color

open “o”

read “r”

write “w”

close “c”

exit “e”

Current Stack State



Playing with Nets & Stack !
• Not sufficient to handle mimicry attacks

‣ Attacks that mimic a correct behavior but doing “bad things”

- System call sequence of these attacks is correct

- Introduce anomalies into call stack

17

0_Entry [open]

[read]

[exit]

[write] [close]

0_2

0_Exit

0_4 0_5 0_6

[exit]

Pool place

Event Color

open “o”

read “r”

write “w”

close “c”

exit “e”

Current Stack State



Playing with Nets & Stack !
• Not sufficient to handle mimicry attacks

‣ Attacks that mimic a correct behavior but doing “bad things”

- System call sequence of these attacks is correct

- Introduce anomalies into call stack

17

0_Entry [open]

[read]

[exit]

[write] [close]

0_2

0_Exit

0_4 0_5 0_6

[exit]

Pool place

Event Color

open “o”

read “r”

write “w”

close “c”

exit “e”

Current Stack State



Playing with Nets & Stack !
• Not sufficient to handle mimicry attacks

‣ Attacks that mimic a correct behavior but doing “bad things”

- System call sequence of these attacks is correct

- Introduce anomalies into call stack

17

0_Entry [open]

[read]

[exit]

[write] [close]

0_2

0_Exit

0_4 0_5 0_6

[exit]

Pool place

Event Color

open “o”

read “r”

write “w”

close “c”

exit “e”

oCurrent Stack State



Playing with Nets & Stack !
• Not sufficient to handle mimicry attacks

‣ Attacks that mimic a correct behavior but doing “bad things”

- System call sequence of these attacks is correct

- Introduce anomalies into call stack

17

0_Entry [open]

[read]

[exit]

[write] [close]

0_2

0_Exit

0_4 0_5 0_6

[exit]

Pool place

Event Color

open “o”

read “r”

write “w”

close “c”

exit “e”

Current Stack State



Playing with Nets & Stack !
• Not sufficient to handle mimicry attacks

‣ Attacks that mimic a correct behavior but doing “bad things”

- System call sequence of these attacks is correct

- Introduce anomalies into call stack

17

0_Entry [open]

[read]

[exit]

[write] [close]

0_2

0_Exit

0_4 0_5 0_6

[exit]

Pool place

Event Color

open “o”

read “r”

write “w”

close “c”

exit “e”

Current Stack State

Return adress
has been replaced 
during the attack !



Playing with Nets & Stack !
• Not sufficient to handle mimicry attacks

‣ Attacks that mimic a correct behavior but doing “bad things”

- System call sequence of these attacks is correct

- Introduce anomalies into call stack

17

0_Entry [open]

[read]

[exit]

[write] [close]

0_2

0_Exit

0_4 0_5 0_6

[exit]

Pool place

Event Color

open “o”

read “r”

write “w”

close “c”

exit “e”

rCurrent Stack State

Return adress
has been replaced 
during the attack !



Playing with Nets & Stack !
• Not sufficient to handle mimicry attacks

‣ Attacks that mimic a correct behavior but doing “bad things”

- System call sequence of these attacks is correct

- Introduce anomalies into call stack

17

0_Entry [open]

[read]

[exit]

[write] [close]

0_2

0_Exit

0_4 0_5 0_6

[exit]

Pool place

Event Color

open “o”

read “r”

write “w”

close “c”

exit “e”

rCurrent Stack State

!
Return adress

has been replaced 
during the attack !



Implementation: Evinrude

18

Evinrude

• Provide flexibility API
• Multi-platform
• Well known by engineers

• Needs GCC
• Written in Java



          Coloane

Implementation: Evinrude

18

Evinrude

• Provide flexibility API
• Multi-platform
• Well known by engineers

• Needs GCC
• Written in Java

• Can be plugged to Coloane

• GUI for CPN-AMI platform
• View / Edit / Save models



          Coloane

Implementation: Evinrude

18

Evinrude

CPN-AMI

Tools

• Provide flexibility API
• Multi-platform
• Well known by engineers

• Needs GCC
• Written in Java

• Can be plugged to Coloane

• GUI for CPN-AMI platform
• View / Edit / Save models

• Check Petri nets syntax
• Allow offline analysis



          Coloane

Implementation: Evinrude

18

Evinrude

CPN-AMI

Tools

• Provide flexibility API
• Multi-platform
• Well known by engineers

• Needs GCC
• Written in Java

• Can be plugged to Coloane

• GUI for CPN-AMI platform
• View / Edit / Save models

• Check Petri nets syntax
• Allow offline analysis

IDS
• Dynamic Library
• LD_PRELOAD
• Export before run



Conclusion
• Automatic construction of a program dedicated IDS

• Select subset of information: Perspective mechanism

• Use the same model for both offline & online analysis

‣ WYCIWYC : What You’ve Checked is What You’ll Check

• Evinrude has already produced models for:

19

Before reduction After reduction

GZip 842 / 1119 / 2406 149 / 165 / 498

Wu-FTPD 4132 / 5331 / 11754 829 / 963 / 3018

LigHTTPd 3403 / 4264 / 8399 673 / 761 / 2392

places / transitions / arcs



Questions ?

• Thank you for your attention...

20


