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Context and motivation

® Multi-threaded programming paradigm

e sequential code which can be executed repeatedly in concurrent
threads

* may interact through shared data and/or rendez-vous
communications

® Petri net framework

e composition operations (process algebra structure)
e programs: (colored) Petri nets

e the active threads identified by differently colored tokens (thread
identifiers)
« dynamic creation

e manipulation of data



Thread identifiers: pids

® Thread identifiers in Petri net markings:

e The potential of accelerating the state explosion problem
e An additional threat for the efficiency of verification

®* However:

e Thread identifiers are arbitrary (anonymous) symbols
whose role is to ensure a consistent execution of each
thread

e The exact identity is irrelevant, but the relationship
between identifiers may be important



Observations

* Thread identifiers may be swaped with other thread
identifiers without changing the resulting execution

®* Some symmetric executions may be identified

® As a result, it may be expected:
e state explosion reduced

e infinite state systems can sometimes be reduced to finite
representations

« allowing in turn to use model checking techniques



Contribution

* A method for an efficient verification of multi-threaded
systems modelled as colored Petri nets (t-nets)

e |ts core: a marking equivalence

« that identifies global states which have essentially isomorphic
future behaviour up to renaming of thread identifiers

« may be computed efficiently and used to aggregate nodes in the
marking graph

e Supports:

« distributed and concurrent thread identifier generation

« testing the relationship between tread identifiers (eg. If a thread
is a descendant / a sibling of another thread, ...)



" Summary

* Thread identifiers generation scheme
® Petri nets and colored markings

® Graph representation of markings

® Marking equivalence

* Example
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Summary

* Thread identifiers generation scheme



Pid generation scheme

e Pids TT TT represented as dot-separated sequences of
positive integers

 There is a set of initial Pids

« Each thread maintains a count g of the threads it has already
spawned:

Ex. if =1.3 and g(11)=6 then V(17)=1.3.7 generates the next child of Tt
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Pid generation scheme

e Operations on pids checking whether
o TI< TU:TLis a parent of TT 1i3vedi 3y
e TI< TU: TUis an ancestor of TU 1.3<1.3.7.1
» Tlis a sibling of T 1.3.7<,1.3.8
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Summary

o
® Petri nets and colored markings
o
[
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Petri nets

spawn
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Petri nets

spawn
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Petri nets

13



Petri nets

spawn
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Colored Petri nets (t-nets)

c<5
<T{C>
—> <TLg+1>
Spawn S,
<T{c+1>
s <TLg+1,0> T~
. g | |<me+i> L
Place types = Cartesian products Here: thread identifiers in tokens
Colored tokens = tuples of values Sg
Arc annotations = (sets of) tuples of
variables

Transition guards = Boolean expressions 15



Colored Petri nets (t-nets)

c<5
<TLC>
—> <TLg+1>
Spawn S,
<TULc+1>
<Ttg+1,0>
S v 5 <T,g> <TLg+1> .

The transition can fire for:
T=1.1
c=3 Sg

g=7/
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Colored Petri nets (t-nets)

<TLc>

Transition can fire for:

T=1.1
c=3
g=7

<TULc+1>

<>

c<5

<TLg+1>

<TLg+1,0>
<TLg+1>
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Colored Petri nets (t-nets)
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Intuitive meaning of the marking

One thread with two active
instances 1.1 and 1.2 \ /
Another thread
with one active
S instance 1.1.8,

The thread 1.1 spawned a new son, 1.1.8. g
g(1.1) becomes 8
g(1.1.8) is 0

the 8th son of 1.1
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Main characteristics of t-nets

* Place types:

e Generator place PxN
o Tokens like <1.1,3>

e Data or control-flow place Px Px...xPxDx...xD
» Tokens like <1.1, 1.2.5, 6, 8> or simply <1.1>

® Transition guards and arc inscriptions: general
* Syntactic restrictions on transition input/output

\’
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Main characteristics of t-nets

® Assumptions on initial marking:
« All data places empty,
« The generator place contains exactly <1, 0>
« There is exactly one control-flow place marked, it contains <1>

® Property of t-nets:

e The markings are control-safe (sequential threads and no
duplication of control-flow tokens):

« Exactly one token owned by 1tin the generator place and exactly
one token owned by Ttin a control-flow place

« Or tokens owned by Ttappear only in data places
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Summary

® Graph representation of markings
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| Graphs of markings
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| Graphs of markings

e 5> <_,4>
abstracted
tuples
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| Graphs of markings

places

abstracted
tuples

abstracted
pids
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' Graphs of markings

places

abstracted
tuples

o 0 = @ abstracted
pids
<C <C <C
a H l abstracted

successors
+ relations
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' Graphs of markings

places

abstracted
tuples

abstracted
pids

<C
I abstracted

successors
+ relations

27



p————_

Summary

o
o
o
® Marking equivalence
[
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Marking equivalence

* Let M and M’ be two reachable markings of a t-net

* Intuitively, M and M’ are equivalent if they represent
global states of the system which have essentially
isomorphic future behavior up to renaming of thread
identifiers.

* Theorem:
M and M’ are equivalent
iff

Graph(M) and Graph(M’) are isomorphic
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Summary

Example
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=

k —initial threads

m — maximum number
of active children

Nk,m

\/{ myc+ 1) .

{m,c)

<y

v(m)

/’

wait

N

- (w0

(m,c—1)

\d

spawn

c<m

7w <
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T

k —initial threads =1
m — maximum number
of active children =1
Nk,m= N1,1

spawn

L

Exam pIe (sim&i?‘ied)

v(m) 7

(mye+ 1) comp

<1.1,0> /( h a

TN e T
c<m ! y(ﬁf)
call
(m,c) (m,c—1) ! !
fun

\d ﬂJ ’]TH

T < 7w |wait |/

ﬂJ <4 71'” ret

eonsp. | wr ¢ (1.
1

F 3

ret

1
o

§g :

ORI
« i Y
fun | g0 . (1.1.1.1)

The state graph of N, , - only 6
states, while infinite behavior
if classical PN transition rule.

Without marking equivalence,
no cycle in the net behaviorz2



Experimental results

0.12

0.1

0.08

0.06

0.04

0.02

Experiments using
* SNAKES (Petri nets)
* NetworkX (graph iso)

Global time irrelevant

Time spent on
computing graph iso
with respect to the size
of the graphs
(vertices*arcs)
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Conclusion

* Introduced a method for modeling and analysis of multi-
threaded state systems

e |t uses colored and composable Petri nets, allowing to
capture systems with dynamic (and concurrent) process
creation and manipulating data

e |t defines and computes a specialized marking equivalence
allowing to aggregate markings in the reachability graph

e |[n some situations, this aggregation may produce a finite
representation of an infinite state system
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Thank you !



