
√ Hanna Klaudel, IBISC, Evry university, France

Maciej Koutny, SCS, Newcastle university, UK

Elisabeth Pelz, LACL, Paris Est university, France

Franck Pommereau, LACL, Paris Est university, France

1

Context and motivation
� Multi-threaded programming paradigm

� sequential code which can be executed repeatedly in concurrent
threads

� may interact through shared data and/or rendez-vous
communicationscommunications

� Petri net framework

� composition operations (process algebra structure)

� programs: (colored) Petri nets

� the active threads identified by differently colored tokens (thread
identifiers)

� dynamic creation

� manipulation of data

2

Thread identifiers: pids
� Thread identifiers in Petri net markings:

� The potential of accelerating the state explosion problem

� An additional threat for the efficiency of verification

� However:

� Thread identifiers are arbitrary (anonymous) symbols

whose role is to ensure a consistent execution of each

thread

� The exact identity is irrelevant, but the relationship

between identifiers may be important

3

Observations
� Thread identifiers may be swaped with other thread

identifiers without changing the resulting execution

� Some symmetric executions may be identified

� As a result, it may be expected:

� state explosion reduced

� infinite state systems can sometimes be reduced to finite

representations

� allowing in turn to use model checking techniques

4

Contribution
� A method for an efficient verification of multi-threaded

systems modelled as colored Petri nets (t-nets)

� Its core: a marking equivalence

� that identifies global states which have essentially isomorphic� that identifies global states which have essentially isomorphic

future behaviour up to renaming of thread identifiers

� may be computed efficiently and used to aggregate nodes in the

marking graph

� Supports:

� distributed and concurrent thread identifier generation

� testing the relationship between tread identifiers (eg. If a thread

is a descendant / a sibling of another thread, …)

5

Summary
� Thread identifiers generation scheme

� Petri nets and colored markings

� Graph representation of markings

Marking equivalence� Marking equivalence

� Example

6

Summary
� Thread identifiers generation scheme

� Petri nets and colored markings

� Graph representation of markings

Marking equivalence� Marking equivalence

� Example

7

Pid generation scheme
� Pids π, π’ represented as dot-separated sequences of

positive integers

� There is a set of initial Pids

� Each thread maintains a count g of the threads it has already � Each thread maintains a count g of the threads it has already

spawned:

Ex. if π=1.3 and g(π)=6 then ν(π)=1.3.7 generates the next child of π

1.3

1.3.71.3.1 1.3.2 …

1.4 …

1.3.7.1 …. 8

Pid generation scheme
� Operations on pids checking whether

� π <c π’: π is a parent of π’ 1.3 <c 1.3.7

� π < π’: π is an ancestor of π’ 1.3 < 1.3.7.1

� π is a sibling of π’ 1.3.7 <b 1.3.8� π is a sibling of π’ 1.3.7 <b 1.3.8

� …

9

Summary
� Thread identifiers generation scheme

� Petri nets and colored markings

� Graph representation of markings

Marking equivalence� Marking equivalence

� Example

10

Petri nets

spawn s2s1 spawn

sg

s2s1

2

11

Petri nets

spawn s2s1 spawn

sg

s2s1

2

12

Petri nets

spawn s2s1 spawn

sg

s2s1

2

13

Petri nets

spawn s2s1 spawn

sg

s2s1

2

14

Colored Petri nets (t-nets)

c<5

spawn

<π,c>
<π.g+1>

s2s1
<1.1,3>

<1.2,5>
spawn

sg

<π,c+1>

<π,g+1><π,g>

s2s1
<1.2,5>

<1.1,7>

<1.2,8>

<π.g+1,0>

Place types = Cartesian products

Colored tokens = tuples of values

Arc annotations = (sets of) tuples of

variables

Transition guards = Boolean expressions

Here: thread identifiers in tokens

15

Colored Petri nets (t-nets)

c<5

spawn

<π,c>
<π.g+1>

s2s1
<1.1,3>

<1.2,5>
spawn

sg

<π,c+1>

<π,g+1><π,g>

s2s1
<1.2,5>

<1.1,7>

<1.2,8>
The transition can fire for:

π=1.1

c=3

g=7

<π.g+1,0>

16

Colored Petri nets (t-nets)

c<5

spawn

<π,c>
<π.g+1>

s2s1
<1.2,5>

<1.1,3> spawn

sg

<π,c+1>

<π,g+1><π,g>

s2s1
<1.2,5>

<1.2,8>
Transition can fire for:

π=1.1

c=3

g=7

<π.g+1,0>

<1.1,7>

17

c<5

spawn

<π,c>
<π.g+1>

s2s1
<1.1,4>

<1.2,5>
<1.1.8>

Colored Petri nets (t-nets)

spawn

sg

<π,c+1>

<π,g+1><π,g>

s2s1
<1.2,5>

<1.1,8>

<1.2,8>

<1.1.8>

<π.g+1,0>

<1.1.8,0>

18

Intuitive meaning of the marking

c<5

spawn

<π,c>
<π.g+1>

s2s1
<1.1,4>

<1.2,5>
<1.1.8>spawn

sg

<π,c+1>

<π,g+1><π,g>

s2s1
<1.2,5>

<1.1,8>

<1.2,8>

<1.1.8>

<π.g+1,0>

<1.1.8,0>
One thread with two active

instances 1.1 and 1.2

Another thread

with one active

instance 1.1.8,

the 8th son of 1.1
The thread 1.1 spawned a new son, 1.1.8.

g(1.1) becomes 8

g(1.1.8) is 0
19

Main characteristics of t-nets
� Place types:

� Generator place P×N

� Tokens like <1.1,3>

� Data or control-flow place P× P×…×P×D×…×D� Data or control-flow place P× P×…×P×D×…×D

� Tokens like <1.1, 1.2.5, 6, 8> or simply <1.1>

� Transition guards and arc inscriptions: general

� Syntactic restrictions on transition input/output

20

Main characteristics of t-nets
� Assumptions on initial marking:

� All data places empty,

� The generator place contains exactly <1, 0>

� There is exactly one control-flow place marked, it contains <1>� There is exactly one control-flow place marked, it contains <1>

� Property of t-nets:

� The markings are control-safe (sequential threads and no

duplication of control-flow tokens):

� Exactly one token owned by π in the generator place and exactly

one token owned by π in a control-flow place

� Or tokens owned by π appear only in data places

21

Summary
� Thread identifiers generation scheme

� Petri nets and colored markings

� Graph representation of markings

Marking equivalence� Marking equivalence

� Example

22

s1
<1.1,4>

<1.2,5>

s1

<1.1.8>

s2

s2

places

s1 s2

Graphs of markings

s1
<1.2,5>

<1.1.8>s2

sg

<1.1,8>

<1.2,8>

<1.1.8,0>

23

s1
<1.1,4>

<1.2,5>

s1

<1.1,4><1.2,5>
<1.1.8>

s2

s2

<_,4><_,5>

places

abstracted

tuples

s1 s2

Graphs of markings

s1
<1.2,5>

<1.1.8>s2

sg

<1.1,8>

<1.2,8>

<1.1.8,0>

tuples

24

s1
<1.1,4>

<1.2,5>

s1

<1.1,4><1.2,5>
<1.1.8>

s2

s2

<_,4><_,5>

places

abstracted

tuples

s1 s2

Graphs of markings

s1
<1.2,5>

<1.1.8>s2

sg

<1.1,8>

<1.2,8>

<1.1.8,0>

1.11.2 1.1.8

0 0

tuples

abstracted

pids

25

Graphs of markings

s1
<1.1,4>

<1.2,5>

s1

<1.1,4><1.2,5>
<1.1.8>

s2

s2

<_,4><_,5>

places

abstracted

tuples

s1 s2

s1
<1.2,5>

<1.1.8>s2

sg

<1.1,8>

<1.2,8>

<1.1.8,0>

1.11.2 1.1.8

1.1.8.11.2.9 1.1.9

<c<c

<c

<c

0 0

tuples

abstracted

pids

abstracted

successors

+ relations

26

Graphs of markings

s1
<1.1,4>

<1.2,5>
<1.1.8>s2

<_,4><_,5>

places

abstracted

tuples

s1 s2

s1
<1.2,5>

<1.1.8>s2

sg

<1.1,8>

<1.2,8>

<1.1.8,0>

<c<c

<c

<c

0 0

tuples

abstracted

pids

abstracted

successors

+ relations

27

Summary
� Thread identifiers generation scheme

� Petri nets and colored markings

� Graph representation of markings

Marking equivalence� Marking equivalence

� Example

28

Marking equivalence
� Let M and M’ be two reachable markings of a t-net

� Intuitively, M and M’ are equivalent if they represent

global states of the system which have essentially

isomorphic future behavior up to renaming of thread isomorphic future behavior up to renaming of thread

identifiers.

� Theorem:

M and M’ are equivalent

iff

Graph(M) and Graph(M’) are isomorphic

29

Summary
� Thread identifiers generation scheme

� Petri nets and colored markings

� Graph representation of markings

Marking equivalence� Marking equivalence

� Example

30

Example (simplified)

k – initial threads

m – maximum number

of active children

Nk,m

31

Example (simplified)

k – initial threads = 1

m – maximum number

of active children = 1

Nk,m = N1,1

<1.1,0>

The state graph of N1,1 - only 6

states, while infinite behavior

if classical PN transition rule.

Without marking equivalence,

no cycle in the net behavior…32

Experimental results

Experiments using

• SNAKES (Petri nets)

• NetworkX (graph iso)

Global time irrelevantGlobal time irrelevant

Time spent on

computing graph iso

with respect to the size

of the graphs

(vertices*arcs)

33

Conclusion
� Introduced a method for modeling and analysis of multi-

threaded state systems

� It uses colored and composable Petri nets, allowing to

capture systems with dynamic (and concurrent) process capture systems with dynamic (and concurrent) process

creation and manipulating data

� It defines and computes a specialized marking equivalence

allowing to aggregate markings in the reachability graph

� In some situations, this aggregation may produce a finite

representation of an infinite state system

34

Thank you !Thank you !

35

