
Model Checking High Level Petri
Net Specifications with Helena

Sami Evangelista
evangeli@cnam.fr

Cedric - CNAM Paris

Séminaire MeFoSyLoMa, le 14 octobre 2005

Model Checking High Level Petri Net Specifications with Helena Sami Evangelista (Cedric - CNAM) 1/ 33

Outline

Background and Motivations

An overview of Helena

State representation in Helena

An example : the load balancing system

Benchmarks

Conclusions and perspectives

Model Checking High Level Petri Net Specifications with Helena Sami Evangelista (Cedric - CNAM) 2/ 33

Outline

Background and Motivations

An overview of Helena

State representation in Helena

An example : the load balancing system

Benchmarks

Conclusions and perspectives

Model Checking High Level Petri Net Specifications with Helena Sami Evangelista (Cedric - CNAM) 3/ 33

The Quasar project

I project started in 2002

I Quasar is a platform for the verification of concurrent programs
written in Ada

I Quasar performs two main tasks
I automatic abstraction (slicing) of the code with respect to a given

property
I automatic translation of the code to a colored Petri net

I The model checking part is left to a third part tool
I To be able to verify complex Ada software, we need a model checker

which can
I enable a straightforward and automatic translation of concurrent

software to high level Petri nets
I handle large state vectors of programs

Model Checking High Level Petri Net Specifications with Helena Sami Evangelista (Cedric - CNAM) 4/ 33

Outline

Background and Motivations

An overview of Helena

State representation in Helena

An example : the load balancing system

Benchmarks

Conclusions and perspectives

Model Checking High Level Petri Net Specifications with Helena Sami Evangelista (Cedric - CNAM) 5/ 33

What is Helena?

I Helena is a High LEvel Net Analyzer.

I Helena can verify deadlock freeness and state properties on-the-fly.

I It is written in portable Ada and freely available under the term of the
GPL.

I Downloadable at http://helena.cnam.fr
I Helena provides

I a specification language to describe high level nets
I a specification language to describe properties
I model checking techniques to verify properties on the fly

Helena
Net description

Property No
+

Counter−Example

Yes

Model Checking High Level Petri Net Specifications with Helena Sami Evangelista (Cedric - CNAM) 6/ 33

Features

Main features

I Transitions agglomerations

I Code generation to speed up the analysis

I Stubborn sets computation

I Compact state representation

I A fast simulation mode with an efficient firing rule

And also...

I High level data types

I Possibility to define high level functions written in an Ada like syntax

I Probabilistic verification methods (bitstate hashing / supertrace and
hash compact methods)

I Interfaces with other tools : Lola, Prod, Tina (via unfolding)

Model Checking High Level Petri Net Specifications with Helena Sami Evangelista (Cedric - CNAM) 7/ 33

Features

Main features

I Transitions agglomerations

I Code generation to speed up the analysis

I Stubborn sets computation

I Compact state representation

I A fast simulation mode with an efficient firing rule

And also...

I High level data types

I Possibility to define high level functions written in an Ada like syntax

I Probabilistic verification methods (bitstate hashing / supertrace and
hash compact methods)

I Interfaces with other tools : Lola, Prod, Tina (via unfolding)

Model Checking High Level Petri Net Specifications with Helena Sami Evangelista (Cedric - CNAM) 7/ 33

Features

Main features

I Transitions agglomerations

I Code generation to speed up the analysis

I Stubborn sets computation

I Compact state representation

I A fast simulation mode with an efficient firing rule

And also...

I High level data types

I Possibility to define high level functions written in an Ada like syntax

I Probabilistic verification methods (bitstate hashing / supertrace and
hash compact methods)

I Interfaces with other tools : Lola, Prod, Tina (via unfolding)

Model Checking High Level Petri Net Specifications with Helena Sami Evangelista (Cedric - CNAM) 7/ 33

Features

Main features

I Transitions agglomerations

I Code generation to speed up the analysis

I Stubborn sets computation

I Compact state representation

I A fast simulation mode with an efficient firing rule

And also...

I High level data types

I Possibility to define high level functions written in an Ada like syntax

I Probabilistic verification methods (bitstate hashing / supertrace and
hash compact methods)

I Interfaces with other tools : Lola, Prod, Tina (via unfolding)

Model Checking High Level Petri Net Specifications with Helena Sami Evangelista (Cedric - CNAM) 7/ 33

Features

Main features

I Transitions agglomerations

I Code generation to speed up the analysis

I Stubborn sets computation

I Compact state representation

I A fast simulation mode with an efficient firing rule

And also...

I High level data types

I Possibility to define high level functions written in an Ada like syntax

I Probabilistic verification methods (bitstate hashing / supertrace and
hash compact methods)

I Interfaces with other tools : Lola, Prod, Tina (via unfolding)

Model Checking High Level Petri Net Specifications with Helena Sami Evangelista (Cedric - CNAM) 7/ 33

Features

Main features

I Transitions agglomerations

I Code generation to speed up the analysis

I Stubborn sets computation

I Compact state representation

I A fast simulation mode with an efficient firing rule

And also...

I High level data types

I Possibility to define high level functions written in an Ada like syntax

I Probabilistic verification methods (bitstate hashing / supertrace and
hash compact methods)

I Interfaces with other tools : Lola, Prod, Tina (via unfolding)

Model Checking High Level Petri Net Specifications with Helena Sami Evangelista (Cedric - CNAM) 7/ 33

Features

Main features

I Transitions agglomerations

I Code generation to speed up the analysis

I Stubborn sets computation

I Compact state representation

I A fast simulation mode with an efficient firing rule

And also...

I High level data types

I Possibility to define high level functions written in an Ada like syntax

I Probabilistic verification methods (bitstate hashing / supertrace and
hash compact methods)

I Interfaces with other tools : Lola, Prod, Tina (via unfolding)

Model Checking High Level Petri Net Specifications with Helena Sami Evangelista (Cedric - CNAM) 7/ 33

Features

Main features

I Transitions agglomerations

I Code generation to speed up the analysis

I Stubborn sets computation

I Compact state representation

I A fast simulation mode with an efficient firing rule

And also...

I High level data types

I Possibility to define high level functions written in an Ada like syntax

I Probabilistic verification methods (bitstate hashing / supertrace and
hash compact methods)

I Interfaces with other tools : Lola, Prod, Tina (via unfolding)

Model Checking High Level Petri Net Specifications with Helena Sami Evangelista (Cedric - CNAM) 7/ 33

Features

Main features

I Transitions agglomerations

I Code generation to speed up the analysis

I Stubborn sets computation

I Compact state representation

I A fast simulation mode with an efficient firing rule

And also...

I High level data types

I Possibility to define high level functions written in an Ada like syntax

I Probabilistic verification methods (bitstate hashing / supertrace and
hash compact methods)

I Interfaces with other tools : Lola, Prod, Tina (via unfolding)

Model Checking High Level Petri Net Specifications with Helena Sami Evangelista (Cedric - CNAM) 7/ 33

Outline

Background and Motivations

An overview of Helena

State representation in Helena

An example : the load balancing system

Benchmarks

Conclusions and perspectives

Model Checking High Level Petri Net Specifications with Helena Sami Evangelista (Cedric - CNAM) 8/ 33

General idea (1)

I In most formalisms, e.g., Petri nets, the transition relation is a
deterministic mechanism
⇒ each state s can be directly encoded as couple (pred , t) where

I pred is a pointer to one of the predecessors of s in the hash table
I t is the transition such that next(pred , t) = s

I States are stored in the hash table explicitly or symbolically
I explicitly: the whole state descriptor is inserted into the hash table
I symbolically: only the couple (pred , t) is stored

I Markings stored symbolically are called ∆-markings

Ú storing a couple (pred , t) instead of the whole state descriptor can
lead to important memory savings

Model Checking High Level Petri Net Specifications with Helena Sami Evangelista (Cedric - CNAM) 9/ 33

General idea (2)

I The encoding scheme proposed is
I non ambiguous: the transition relation is deterministic
I but also non canonical: a state may have several predecessors

⇒ comparing a state s with an encoded representation (pred , t)
becomes more difficult

I Solution: follow the pointers to predecessors until a state stored
explicitly is found and execute the transitions sequence to retrieve the
actual representation of the couple (pred , t)

I This mechanism will be called a state reconstitution, and the
transitions sequences will be called a reconstituting sequence

Ø checking whether or not a state s is already in the state space can be
considerably slower

Model Checking High Level Petri Net Specifications with Helena Sami Evangelista (Cedric - CNAM) 10/ 33

How to limit the time overhead introduced by the method?

I Observation: the computation time introduced directly depends on
the lengths of the reconstituting sequences

I To place an upper bound on this length we use the underlying idea of
the stratified caching strategy:
Some strata of states are stored explicitly while others are stored
symbolically

I We introduce a parameter kδ

States met at a depth d such that d mod kδ = 0 are stored explicitly.
Others are stored symbolically

⇒ the length of a reconstituting sequence is at most kδ − 1

Model Checking High Level Petri Net Specifications with Helena Sami Evangelista (Cedric - CNAM) 11/ 33

State space representation

Example of a state space with kδ = 3

Delta−marking

Explicit marking

Transition firing

Delta−marking pointer
m2

t2

t1

m1

m0

Model Checking High Level Petri Net Specifications with Helena Sami Evangelista (Cedric - CNAM) 12/ 33

1st optimization: updating ∆-markings predecessor

Idea: update the predecessor of a ∆-marking when a shorter path to an
explicit marking is found

Update

mn

t n−1

t 2

m2

m1

t 1

mn

t 2

m2

m1

t n−1

S
...

t 1

m

t

Ú reconstitution of mn and markings of S will be fasten

Model Checking High Level Petri Net Specifications with Helena Sami Evangelista (Cedric - CNAM) 13/ 33

2nd optimization: backward firing of the reconstituting
sequence

I Comparing a marking m with a marking m′ encoded symbolically as
(pred , t) requires two costly operations:

I the decoding of an explicit marking e
I the firing of the reconstituting sequence s to retrieve the actual value of

m′

then the comparison of m and m′ becomes trivial

I Idea: these two costly operations can be avoided by performing a
backward firing, i.e., an unfiring, of s on m

I Let s = s1.t.s2. If, after the unfiring of s2 on m we reach a marking
m′′ such that t cannot be unfired on m′′ we can stop the
reconstitution since next(e, s) 6= m and therefore m′ 6= m

I Otherwise, if the unfiring of s on m leads to marking e then m and m′

correspond to the same marking

Ú can avoid useless reconstitutions

Model Checking High Level Petri Net Specifications with Helena Sami Evangelista (Cedric - CNAM) 14/ 33

Outline

Background and Motivations

An overview of Helena

State representation in Helena

An example : the load balancing system

Benchmarks

Conclusions and perspectives

Model Checking High Level Petri Net Specifications with Helena Sami Evangelista (Cedric - CNAM) 15/ 33

System specification

We want to specify a system with

I a set of C clients which send requests to servers

I a set of S servers which treat the requests of clients
I a load balancer which

I routes the requests of clients towards the appropriate server, i.e., the
least loaded

I rebalances the loads of servers when needed

Model Checking High Level Petri Net Specifications with Helena Sami Evangelista (Cedric - CNAM) 16/ 33

The clients - Algorithm

I send a request to servers

I wait for the answer

I go back to the idle state

<c>
<c>

<c>

<c>

Cwait

Csend

Creceive

Cidle

Crequest

Cack

<c>

<c>

Model Checking High Level Petri Net Specifications with Helena Sami Evangelista (Cedric - CNAM) 17/ 33

The clients - Specification in Helena

con s t an t i n t C := 7 ;
type Cid : range 1 . . C ;

p l a c e C i d l e {dom : Cid ; i n i t : f o r (c i n Cid) <(c)>;}
p l a c e Cwait {dom : Cid ;}
p l a c e Creques t {dom : Cid ;}
p l a c e Cack {dom : Cid ;}

t r a n s i t i o n Csend {
i n { C i d l e :<(c)>;}
out { Cwait :<(c)>; C r eque s t :<(c)>;}}

t r a n s i t i o n C r e c e i v e {
i n { Cwait :<(c)>; Cack :<(c)>; }
out { C i d l e :<(c)>;}}

Model Checking High Level Petri Net Specifications with Helena Sami Evangelista (Cedric - CNAM) 18/ 33

The servers - Algorithm

I wait for a client request and accept it

I notify it to the load balancer and wait for its acknowledgment

I treat the request and acknowledge the client

Sidle

Swait

Sprocess

Snotify

Sreceive

Ssend

<s>

<s, c>

<s, c>

<s, c>

<s, c>

<c, s>

<s>

<s>

<c>

Srequest

Snotification

Snotification_ack
<s>

Cack

Model Checking High Level Petri Net Specifications with Helena Sami Evangelista (Cedric - CNAM) 19/ 33

The servers - Specification in Helena

con s t an t i n t S := 2 ;
type S id : range 1 . . S ;

p l a c e S i d l e {dom : S id ;
i n i t : f o r (s i n S id) <(s)>;}

p l a c e Swai t {dom : S id ∗Cid ;}
p l a c e Sp ro c e s s {dom : S id ∗Cid ;}
p l a c e S n o t i f i c a t i o n {dom : S id ;}
p l a c e S n o t i f i c a t i o n a c k {dom : S id ;}
p l a c e S r eque s t {dom : Cid ∗ S id ;}

Model Checking High Level Petri Net Specifications with Helena Sami Evangelista (Cedric - CNAM) 20/ 33

The servers - Specification in Helena

t r a n s i t i o n S n o t i f y {
i n { S i d l e :<(s)>; S r eque s t :<(c , s)>; }
out { Swa i t i ng :<(s , c)>; S n o t i f i c a t i o n :<(s)>;}}

t r a n s i t i o n S r e c e i v e {
i n { Swa i t i ng :<(s , c)>; S n o t i f i c a t i o n a c k :<(s)>;}
out { Sp r o c e s s i n g :<(s , c)>;}}

t r a n s i t i o n Ssend {
i n { Sp r o c e s s i n g :<(s , c)>;}
out { S i d l e :<(s)>; Cack :<(c)>;}}

Model Checking High Level Petri Net Specifications with Helena Sami Evangelista (Cedric - CNAM) 21/ 33

The load balancer - Routing algorithm

I wait for a client request

I choose the least loaded server

I route the request to this server

<l>

<l, c>

<l, c>

<incr(l, least(l))>

<c>

Lrouting

LreceiveC

Lroute

Lidle
Crequest

Srequest

<c, least(l)>

Clients

Servers

Model Checking High Level Petri Net Specifications with Helena Sami Evangelista (Cedric - CNAM) 22/ 33

The load balancer - Load distribution algorithm

I wait for a server to accept a client request

I acknowledge the server

I if the loads are not balanced then remove a request for the most
loaded server and give it to the least loaded server

<l>

<incr(l,s)>

<l><l>
Lno_balance Lbalance

Srequest

Lidle

Lreceive_server

<l>

<incr(decr(l, most(l)), least(l))>

Lbalancing

Snotification

Snotification_ack

Servers

<s>

<s>

<c, most(l)>

<c, least(l)>

Model Checking High Level Petri Net Specifications with Helena Sami Evangelista (Cedric - CNAM) 23/ 33

The load balancer - Specification in Helena

type Cno : range 0 . . C ;
type l oad : v e c t o r [S id] o f Cno ;
c on s t an t l oad empty load := [0] ;

/ / r e t u r n t h e l e a s t l o a d s e r v e r s

f u n c t i o n l e a s t (l oad l) −> S id {
S id r e s u l t := Sid ’ f i r s t ;
f o r (i i n S id)

i f (l [i] < l [r e s u l t])
r e s u l t := i ;

r e t u r n r e s u l t ;
}

Model Checking High Level Petri Net Specifications with Helena Sami Evangelista (Cedric - CNAM) 24/ 33

The load balancer - Specification in Helena

t r a n s i t i o n L r e c e i v e s e r v e r {
i n { L i d l e :<(l)>; S n o t i f i c a t i o n :<(s)>;}
out { Lba l an c i ng :<(i n c r (l , s)) > ;

S n o t i f i c a t i o n a c k :<(s)>;}
t r a n s i t i o n Lno ba l ance {

i n { Lba l an c i ng :<(l)>;}
out { L i d l e :<(l)>;}
guard : i s b a l a n c e d (l) ; }

t r a n s i t i o n Lba lance {
i n { Lba l an c i ng :<(l)>; S r eque s t :<(c , l e a s t (l)) > ;}
out { L i d l e :<(i n c r (dec r (l , most (l)) , l e a s t (l))) > ;

S r eque s t :<(c , most (l)) > ;}
guard : not i s b a l a n c e d (l) ; }

Model Checking High Level Petri Net Specifications with Helena Sami Evangelista (Cedric - CNAM) 25/ 33

Property specification

There is no deadlock state.

r e j e c t dead l ock ;

The requests are uniformly distributed upon the servers.

r e j e c t not (
/ / t h e l o a d b a l a n c e r i s b a l a n c i n g t h e r e q u e s t s

ca rd (Lba l an c i ng) = 1 or

/ / t h e d i f f e r e n c e b e t w e e n t h e n u m b e r o f r e q u e s t s

/ / f o r t w o s e r v e r s s 1 a n d s 2 i s a t m o s t 1

f o r a l l (s1 i n Sid , s2 i n S id : s1 = s2 or
d i f f (ca rd (S r eque s t s r : s r−>2 = s1) ,

ca rd (S r eque s t s r : s r−>2 = s2)) <= 1)) ;

Model Checking High Level Petri Net Specifications with Helena Sami Evangelista (Cedric - CNAM) 26/ 33

Outline

Background and Motivations

An overview of Helena

State representation in Helena

An example : the load balancing system

Benchmarks

Conclusions and perspectives

Model Checking High Level Petri Net Specifications with Helena Sami Evangelista (Cedric - CNAM) 27/ 33

Results obtained for the load balancing system

Property verified : requests are uniformly distributed upon the servers.

Initial net Reduced net

C S States Arcs Time States Arcs Time

4 2 13 776 46 977 0 6 420 22 533 0
5 2 99 061 393 253 1 41 456 171 128 1
6 2 673 814 3 031 863 13 260 744 1 230 207 5
7 2 4 397 196 22 023 767 104 1 574 530 8 344 591 36

4 3 43 806 155 673 0 16 938 61 569 0
5 3 409 581 1 698 438 6 139 836 595 638 3
6 3 3 766 968 17 604 621 85 1 232 262 5 897 781 28
7 3 32 056 569 165 557 136 5 465 9 613 008 51 203 400 295

Model Checking High Level Petri Net Specifications with Helena Sami Evangelista (Cedric - CNAM) 28/ 33

Maria vs Helena on some academic models

Model States Maria Helena
T M T M

Dbm 2 125 765 932 sec. 296.30 Mo 410 sec. 328.42 Mo
Dining 4 126 351 341 sec. 56.63 Mo 151 sec. 65.95 Mo
Eratos 2 028 969 116 sec. 80.13 Mo 63 sec. 90.33 Mo

Lamport 1 914 784 96 sec. 26.56 Mo 46 sec. 32.04 Mo
Leader 1 518 111 150 sec. 28.68 Mo 70 sec. 32.38 Mo

Peterson 3 407 946 134 sec. 35.06 Mo 57 sec. 41.93 Mo
Slotted 3 294 720 197 sec. 34.51 Mo 99 sec. 41.57 Mo

Model Checking High Level Petri Net Specifications with Helena Sami Evangelista (Cedric - CNAM) 29/ 33

Results obtained for an Ada client / server program

Property verified : absence of deadlock.

No comp. Collapse ∆ ∆ + Collapse

4 clients, 10 running tasks, 34 731 states
M 9.45 1.37 1.42 0.30
T 00:00:02 00:00:03 00:00:03 00:00:04
V 285.17 41.26 42.71 9.10

5 clients, 12 running tasks, 635 463 states
M 205.63 28.37 21.94 4.98
T 00:00:51 00:01:54 00:01:44 00:01:52
V 339.31 46.82 36.20 8.21

6 clients, 14 running tasks, 13 805 931 states
M - 684.41 962.489 167.85
T - 00:26:04 00:44:20 00:48:59
V - 51.98 73.10 12.75

Model Checking High Level Petri Net Specifications with Helena Sami Evangelista (Cedric - CNAM) 30/ 33

Results obtained for an Ada implementation of the sieves
of Eratosthene

Property verified : absence of deadlock.

No comp. Collapse ∆ ∆ + Collapse

N=20, 9 running tasks, 3 599 634 states
M 698.74 214.51 100.72 37.28
T 00:07:10 00:08:05 00:12:05 00:14:11
V 203.54 62.49 29.34 10.86

N=25, 10 running tasks, 24 884 738 states
M - - 676.24 260.289
T - - 01:53:50 02:07:02
V - - 28.49 10.97

N=30, 11 running tasks, 96 566 610 states
M - - - 1 026.89
T - - - 12:25:40
V - - - 11.15

Model Checking High Level Petri Net Specifications with Helena Sami Evangelista (Cedric - CNAM) 31/ 33

Outline

Background and Motivations

An overview of Helena

State representation in Helena

An example : the load balancing system

Benchmarks

Conclusions and perspectives

Model Checking High Level Petri Net Specifications with Helena Sami Evangelista (Cedric - CNAM) 32/ 33

Conclusions and Perspectives

Conclusions

Helena is an explicit model checker for high level Petri nets which

I targets software specification model checking

I enables to define high level data types and functions

I is particularly efficient in terms of memory (it can handle state spaces
with 108 states)

I tackles the state explosion problem by the use of structural
abstraction techniques and partial order methods

Perspectives

I implementation of extended agglomerations

I integrate a LTL model checking module (possibly through an interface
with the SPOT library)

I support of the Petri Net Markup Language

Model Checking High Level Petri Net Specifications with Helena Sami Evangelista (Cedric - CNAM) 33/ 33

	Background and Motivations
	An overview of Helena
	State representation in Helena
	An example : the load balancing system
	Benchmarks
	Conclusions and perspectives

