
��Formally Grounded Specifications

Requirements Methodology

C. Choppy

LIPN, Université Paris XIII France
http://lipn.univ-paris13.fr/~choppy

Joint work with

G. Reggio

DISI, Università di Genova, Italy

Plan

• A formally grounded development method

for formal requirements specifications

• Link with “less formal” use cases

• …

CC 2'

&

$

%

Outline and motivation

• Write relevant, legible, useful specifications of the systems to be developed

• Informal notations (graphics)/formal (semantics)

• Companion user method helping to understand the system to be developed

(different from helping to use the proposed formalism)

• Accomodate different natures of systems

• The best of both worlds !?

FORMAL INFORMAL

notation not very friendly (exotic) very friendly, visual

notation rigid, overhead flexible, adaptable

learning time, background short(?)

case studies simple (?) real common app

Towards a Formally Grounded Development Method

Jan 2005 IFIP WG1.3

CC 3'

&

$

%

Outline and motivation (2)

Methods taking into account:

• a software item:

– a simple dynamic system

– a structured dynamic system

– a data structure

• two specification techniques: property-oriented, model-oriented (constructive)

• CASL and CASL-LTL specifications

Illustration on case studies

To be used

• for requirement specifications

• in combination with structuring concepts as (Jackson’s) problem frames

Towards a Formally Grounded Development Method

Jan 2005 IFIP WG1.3

CC 6'

&

$

%

Case Study: a lift system

• a lift plant (the cabin, the motor moving it, the doors at the various floors)

• the controller (some software automatically controlling the lift functioning)

• the users

• sensors (e.g., cabin position, doors at floors, motor working status)

• orders (e.g., open/close the doors, move up/down/stop motor)

• users enter or leave the cabin . . .

Towards a Formally Grounded Development Method

Jan 2005 IFIP WG1.3

CC 7'

&

$

%

Ingredients for a generic specification method

adapted from Astesiano, Reggio, TCS 2000.

viewedAs

1* 1..*

semantics

**

modelling

Item FormalModel Specification Presentation Documentation

Guidelines

*

1 - Items that will be specified

2 - Formal models of the items

3 - Modelling

4 - Specification

5 - Semantics

6 - Presentation

7 - Documentation

8 - Guidelines

Towards a Formally Grounded Development Method

Jan 2005 IFIP WG1.3

CC 8'

&

$

%

Items

Item

parts
*

Constituent
Feature

Definition

Specification
*

partsSpec

features

FormalModel

has

*

*

features

CFmodelling

* *

CFsemanticsConstituent
Feature
FMod

Constituent
Feature

*

Category
1..* *

isA

• structured (parts)

• characterized by constituent features of different kinds

Towards a Formally Grounded Development Method

Jan 2005 IFIP WG1.3

CC 9'

&

$

%

Property vs Model oriented

validity

*

Specification

Property-Oriented Specification

Formula

similar

*

Constructive Specification

FormalModel

semB

*

*

• Property-oriented (axiomatic) : “relevant” properties expressed

• Model-oriented (constructive) : exhibit a prototype . . .

for: simple dynamic systems, structured dynamic systems, data structures

“6” specification methods with common parts.

Towards a Formally Grounded Development Method

Jan 2005 IFIP WG1.3

CC 5'

&

$

%

CASL and CASL-LTL

• CASL (Common Algebraic Specification Language)

partial ops, datatypes declarations, union, extension

free construct, generic specifications

• CASL-LTL a simple system is considered as a labelled transition system (lts):

labels, states and transition relation

Labelled Transition Logic [Astesiano, Reggio, Costa, TCS97]

dsort st label lab stands for
sorts st, lab

pred −−→ : st × lab × st
temporal logic (branching, CTL like) used to express properties of the

dynamic systems in terms of their paths or sequences of transitions, e.g. :

in any case(S , π) or in one case(S , π)

when a formula holds on the first state of a path,

at the first label of a path, eventually, always

Towards a Formally Grounded Development Method

Jan 2005 IFIP WG1.3

CC 10'

&

$

%

A General Property-oriented Specification Method (GPSm)

Exaustive Search
Guidelines

Cell Contents
Presentation

Cells Filling
Documentation

DocumentationGuidelinesPresentation

Find: parts, constituent features, express properties (cell filling, presentation).

..... CF
1

n1

CF
1

1

CF
1

n1

CF
k

1

CF
k

nk

.....

.....

.....

CF
1

1
.....

CF
k

1
..... CF

k

nk

KIND
1

KIND
k

K
I
N
D1

K
I
N
Dk

Towards a Formally Grounded Development Method

Jan 2005 IFIP WG1.3

CC 11'

&

$

%

Outline

Methods taking into account:

• a software item:

– a simple dynamic system

– a structured dynamic system

– a data structure

• two specification techniques: property-oriented, model-oriented (constructive)

• CASL and CASL-LTL specifications

Illustration on case studies

• in combination with structuring concepts as (Jackson’s) problem frames

Towards a Formally Grounded Development Method

Jan 2005 IFIP WG1.3

CC 12'

&

$

%

A Simple System

Simple system Data structure
parts

features

1..*

*

State featureElementary interaction

Constituent feature

A dynamic system without any internal components cooperation.

A labelled transition system.

Constituent features:

- state constituent features

- label: elementary interactions of different types

Parts: data structures

Towards a Formally Grounded Development Method

Jan 2005 IFIP WG1.3

CC 13'

&

$

%

Property-oriented specifications (Simple systems)

Simple system property-oriented specification

1..*

*

*

State observer definition

name: String
argTypes:Sequence(Type)
resultType: Type

Data structure specification

Elementary interaction definition

name: String
argTypes:Sequence(Type)

name: String

parts

s-features e-features

Property

properties
*

state observers,
so(type1, ...,typen): type

SystemName

elementary interactions,
EI(type1, ..., typen)

Data1 Datar....

Visual presentation

Elementary
Interaction

State
Observer

so

ei

ei1,ei2

so,ei so1,so2

Elementary
Interaction

State
Observer

Cell filling

Towards a Formally Grounded Development Method

Jan 2005 IFIP WG1.3

CC 14'

&

$

%

Cell schemata (Simple system/Property-oriented)

About two elementary interactions

incompatibility2: Set(LabelProp)

About an elementary interaction

incompatibility1: Set(LabelProp)
pre-cond1: Set(TransitionProp)
post-cond1: Set(TransitionProp)
vitality1: Set(StateProp)

About a state observer

value1: Set(StateProp)
how-change: Set(TransitionProp)
change-vitality: Set(StateProp)

About an elementary
interaction and a state observer

pre-condition2: Set(TransitionProp)
post-condition2: Set(TransitionProp)
vitality2: Set(StateProp)

About two state
observers

value2: Set(StateProp)

Cell filling

Each cell may contain several properties of different nature. Properties on:

- labels (incompatibilities between elementary interactions under some condition)

- states (state observers properties where path properties may appear)

- transitions (conditions on source and target state observers).

Towards a Formally Grounded Development Method

Jan 2005 IFIP WG1.3

CC 15'

&

$

%

Cell: About a state observer (so) -(Simple/Property)

value1 (state property) The results of the observation made by so on a state

must satisfy some conditions.

cond, where so must appear in cond

how-change (transition property) If the observed value changes during a
transition, then some condition on the source and target state (the old and the
new value) holds, and some elementary interactions must belong to the
transition label.

if so(arg) = v1 and so’(arg) = v2 and v1 6= v2 then cond(v1 ,v2 ,arg) and ei1 , . . . , ein happen

change-vitality (state property) If a state satisfies some condition, then the
observed value will change in the future.

if cond(v1 ,v2 ,arg) and so(arg) = v1 and v1 6= v2 then in any case eventually so(arg) = v2

Note: “at least in a case” (instead of “in any case”) or “next” (instead of

“eventually”) are possible.

Towards a Formally Grounded Development Method

Jan 2005 IFIP WG1.3

CC 16'

&

$

%

Cell: About an elementary interaction (ei) -(Simple/Property)

incompatibility1 (label property) If their arguments satisfy some conditions, then

two instantiations of ei are incompatible, i.e., no label may contain both.

ei(arg1) incompatible with ei(arg2) if cond(arg1 ,arg2)

pre-cond1 (transition property) If the label of a transition contains some

instantiation of ei, then the source state of the transition must satisfy some

condition.

if ei(arg) happen then cond(arg) where source state observers must appear in

cond(arg) and target state ones cannot appear

post-cond1 (transition property) If the label of a transition contains some

instantiation of ei, then the target state of the transition must satisfy some

condition). This may involve the source state.

if ei(arg) happen then cond(arg) where target (primed) state observers must

appear in cond(arg) and source (non-primed) state ones may appear

Towards a Formally Grounded Development Method

Jan 2005 IFIP WG1.3

CC 17'

&

$

%

Cell: About an elementary interaction (ei) - 2

(Simple/Property)

vitality1 (state property) If a state satisfies some condition, then any sequence of

transitions starting from it will eventually contain a transition whose label

contains ei. Note that vitality properties may have also the form “at least in a

case” (instead of “in any case”) or “next” (instead of “eventually”).

if cond(arg) then in any case eventually ei(arg) happen

Towards a Formally Grounded Development Method

Jan 2005 IFIP WG1.3

CC 18'

&

$

%

LiftPlant : Parts and Constituent Features (Simple/Property)

CABIN_POSITION(Floor)
DOOR_POSITION(Floor, DoorPosition)
DOOR_O(Floor, DoorPosition)
MOTOR_STATUS (MotorStatus)
MOTOR_O(MotorStatus)
TRANSIT(Int)

door_position(Floor): DoorPosition
cabin_position: Floor
motor_status: MotorStatus
users_inside: Nat

LiftPlant

Floor

MotorStatus

down | up | stop

DoorPosition

open | closed

Parts: Floor, MotorStatus, DoorPosition

Constituent features

- Elementary interactions

CABIN POSITION, DOOR POSITION, DOOR O, MOTOR STATUS, MOTOR O,

TRANSIT

- State observers

door position, cabin position, motor status, users inside

Towards a Formally Grounded Development Method

Jan 2005 IFIP WG1.3

CC 19'

&

$

%

Lift Plant properties - On MotorStatus (Simple/Property)

incompatibility1 (label property)
A sensor cannot signal two different values simultaneously.

MOTOR STATUS(ms1) incompatible with MOTOR STATUS(ms2) if ms1 6= ms2

pre-cond1 (transition property)
A sensor always signals the correct data.

if MOTOR STATUS(ms) happen then motor status = ms

post-cond1 (transition property)

None

vitality1 (state property)
A sensor cannot break down, thus it may always be able to signal the correct
value.

at least in one case next MOTOR STATUS(motor status) happen

Towards a Formally Grounded Development Method

Jan 2005 IFIP WG1.3

CC 20'

&

$

%

Lift Plant properties - On the orders (Simple/Property)

Cell filling, drop repetition, rearrange, . . .

- Only appropriate groups of orders may be received simultaneously by the lift

plant; precisely at most one order for the motor and one for the doors.
MOTOR O(ms1) incompatible with MOTOR O(ms2) if ms1 6= ms2

DOOR O(f1 ,dps1) incompatible with DOOR O(f2 ,dps2) if . . .

- An order cannot be received when its execution may be problematic; precisely

move up (down) only when the motor is stopped and the cabin is not at the top

(ground) floor, and open the door at f only when no door is open, the cabin is at

floor f and the motor is stopped.

if MOTOR O(up) happen then motor status = stop and cabin position 6= top

if MOTOR O(down) happen then motor status = stop and cabin position 6= ground

if DOOR O(f1 ,open) happen then

(for all f • if f 6= f1 then door position(f) 6= open) and cabin position = f 1 and motor status = stop

- The orders are always correctly executed.
if MOTOR O(ms) happen then motor status′ = ms

if DOOR O(f,dps) happen then door position′(f) = dps

Towards a Formally Grounded Development Method

Jan 2005 IFIP WG1.3

CC 21'

&

$

%

CASL, CASL-LTL view - (Simple/Property)

• poSpec.parts = {ds1 , . . . , dsj} data structure specifications

DS1 , . . . , DSj are the CASL-LTL presentations of ds1 , . . . , dsj
• poSpec.e-features = {ei1 , . . . , ein} the elementary interactions

• poSpec.s-features = {so1 , . . . , som} the state observers

spec ELINTERACTION =

free type elInteraction ::=

ei1 .name(ei1 .argTypes) | . . . | ein .name(ein .argTypes)

spec poSpec.name =

FINITESET[ELINTERACTION] and DS1 and . . . and DSj then

dsort st label FinSet[elInteraction]

ops so1 .name : st × so1 .argTypes →? so1 .resType

. . .

som .name : st × som .argTypes → som .resType

axioms

formulae corresponding to the cell fillings

Towards a Formally Grounded Development Method

Jan 2005 IFIP WG1.3

CC 22'

&

$

%

CASL CASL-LTL view: properties (Simple/Property)

• transition properties

expressed by

cond S
l

−−→ S ′ ⇒ cond’

where cond’ is obtained from cond by adding

- S as extra argument to each source (non-primed) state observer,

- S ′ as extra argument to each target (primed) state observer,

and by the following replacement

replaced by

“eInt happen” eInt ∈ l

Towards a Formally Grounded Development Method

Jan 2005 IFIP WG1.3

CC 23'

&

$

%

CASL CASL-LTL view: properties (follwd) (Simple/Property)

• label properties

eInt1 incompatible with eInt2 if cond cond ⇒ ¬ (eInt1 ∈ l ∧ eInt2 ∈ l)

var l : FinSet [elInteraction]

• state properties

in any case . . . in any case(S , . . .)

at least in one case . . . in one case(S , . . .)

eventually eInt(arg) happen eventually < l • eInt(arg) ∈ l >

.

Towards a Formally Grounded Development Method

Jan 2005 IFIP WG1.3

CC 24'

&

$

%

Constructive specifications (Simple systems)

Simple system constructive specification

1..*

*

*

Data structure specification

name: String

parts

s-features e-features

State constructor definition

name: String
argTypes:Sequence(Type)

Elementary interaction definition

name: String
argTypes:Sequence(Type)

conditional-rules*

Conditional rule

state constructors,
C(type1, ...,typen)

SystemName

elementary interactions,
ei(type1, ..., typen)

Data1 Datar....

Towards a Formally Grounded Development Method

Jan 2005 IFIP WG1.3

CC 25'

&

$

%

Constructive specifications (Simple systems) - Properties

C’(arg2)
[cond(arg1,arg2,eiSet)]

C(arg1)
eiSet

RECEIVE-OK(inv)

RECEIVE-ER(inv)
[a =< inv] RECEIVE-OK(inv)

[a > inv]

Init(a)

DONE& ASK-NEW

REFUSED(inv) & ASK-NEW

Init(inv)

Processing(inv)

Stopped

Refusing(a,inv)

if a > inv then Init(a)
RECEIVE−OK (inv)
−−−−−−−−−−−−−−→ Processing(inv)

if a > inv then Init(a)
RECEIVE−ER(inv)
−−−−−−−−−−−−−−→ Stopped

if a ≤ inv then Init(a)
RECEIVE−OK (inv)
−−−−−−−−−−−−−−→ Refusing(a, inv)

Refusing(a, inv)
{REFUSED(inv),ASK−NEW}
−−−−−−−−−−−−−−−−−−−−−→ Init(a)

Processing(inv)
{DONE ,ASK−NEW}
−−−−−−−−−−−−−−−→ Init(inv)
Towards a Formally Grounded Development Method

Jan 2005 IFIP WG1.3

CC 26'

&

$

%

Lift Controller (Simple/Constructive)

Coordinating
Stopping(Floor)
Handle_C(Floor,DoorPositions,MotorStatus)
Start_To_Move(Floor,MotorStatus)
Move_Up(Floor,Floor)
Move_Down(Floor,Floor)
Stop

Controller

MOTOR_O(MotorStatus)
DOOR_O(Floor,DoorPosition)
DOOR_POSITIONS(DoorPositions)
CABIN_POSITION(Floor)
MOTOR_STATUS(MotorStatus)
CALL(Floor)

Floor

MotorStatus

down | up | stop

DoorPosition

open | closed

DoorPositions

List(DoorPosition)

allCloseBut(Floor,DoorPositions)

Towards a Formally Grounded Development Method

Jan 2005 IFIP WG1.3

CC 27'

&

$

%

Lift Controller behaviour (Simple/Constructive)

Coordinating

CALL(f) &
CABIN_POSITION(f1) &
DOOR_POSITIONS(dposs) &
MOTOR_STATUS(ms)

Handle_C(f,f1,dposs,ms)

[ms = stop and
 f =/= f1 and
 allCloseBut(f1,dposs)]
DOOR_O(f1,close)

[ms =/= stop or
 f = f1 or
 not allCloseBut(f1,dposs)]

Start_To_Move(f,f1,ms)

[f above f1]
MOTOR_O(up)

[ms =/= up]
MOTOR_STATUS(ms) &
MOTOR_O(stop)

Move_Down(f,f1)

[f =/= f1]
CABIN_POSITION(f2) &

MOTOR_STATUS(down)

 [f = f1] MOTOR_O(stop)

[ms =/= down]
MOTOR_STATUS(ms) &

MOTOR_O(stop)

Move_Down(f,f2)

DOOR_O(f1,open)

[f1 above f]
MOTOR_O(down)

Move_Up(f,f1)

Move_Up(f,f2) [f =/= f1]
CABIN_POSITION(f2) &
MOTOR_STATUS(up)

Stopping(f1)

 [f = f1] MOTOR_O(stop)

Stop

Towards a Formally Grounded Development Method

Jan 2005 IFIP WG1.3

CC 28'

&

$

%

CASL, CASL-LTL view: constructive spec of simple systems

• conSpec.parts = {ds1 , . . . , dsj}

DS1 , . . . , DSj are the CASL-LTL presentations of ds1 , . . . , dsj
• conSpec.e-features = {ei1 , . . . , ein} the elementary interactions

• conSpec.s-features = {sCon1 , . . . , sConm} the state constructors
spec ELINTERACTION =

free type elInteraction ::= ei1 .name(ei1 .argTypes) | . . . | ein .name(ein .argTypes)

spec conSpec.NAME =

FINITESET[ELINTERACTION] and DS1 and . . . and DSj then

free {

dsort st label FinSet[elInteraction]

ops sCon1 .name : sCon1 .argTypes → st

. . .

sConm .name : st × sConm .argTypes → st

axioms

formulae corresponding to conditional rules

} end

Towards a Formally Grounded Development Method

Jan 2005 IFIP WG1.3

CC 29'

&

$

%

Outline

Methods taking into account:

• a software item:

– a simple dynamic system

– a structured dynamic system

– a data structure

• two specification techniques: property-oriented, model-oriented (constructive)

• CASL and CASL-LTL specifications

Illustration on case studies

• in combination with structuring concepts as (Jackson’s) problem frames

Towards a Formally Grounded Development Method

Jan 2005 IFIP WG1.3

CC 30'

&

$

%

Structured Systems

• specialization of the simple dynamic systems

• simple or structured subsystems uniquely identified by some identity

• situation: subsystems situations

• global move: simultaneous/concurrent executions of subsystems (local)

moves

• generalized lts - information: set of local moves

subSyst-parts

Simple system Data structure
parts

Elementary interaction

features

1..*

State feature

*

Structured system

1..*

Local interaction

Constituent feature

Towards a Formally Grounded Development Method

Jan 2005 IFIP WG1.3

Transition of a structured system

• Local elementary interactions: A.e A.f …

• Global elementary interactions: X Y

A:s1 B:s2 C:s3 D:s4 E:s5

A:s1’ B:s2’ C:s3’ D:s4 E:s5

{h} {X,Y}{e,f} {g,e}

CC 31'

&

$

%

Property-oriented specifications of structured systems

1..*

**

State observer definition Data structure specification

Elementary interaction definition

Structured system property-oriented specification

name: String

partss-features

e-features

System specification

1..*
subsyst-Specs

1..*
subsystems

Subsystem

id: Ident
type: String

Property

properties
*

Configuration

state observers
so(type1, ...,typen): type

SystemName

elementary interactions
ei(type1, ..., typen)

....Syst 1DatarData1 Syst p

Towards a Formally Grounded Development Method

Jan 2005 IFIP WG1.3

CC 32'

&

$

%

Configuration and cells (Structured/Property)

C1: Sys Cn: Sys
1 < n < 10

A: Sys2 B: Sys2Sys1

Configuration

About an elementary interaction

incompatibility1: Set(LabelProp)
pre-cond1: Set(TransitionProp)
post-cond1: Set(TransitionProp)
vitality1: Set(StateProp)
local-global1: Set(TransitionProp)

About two elementary
interactions

About a state
observer

About an elementary
interaction and a state observer

Cell filling

About an elementary interaction
and a local interaction

local-global2: Set(TransitionProp)

About a local interaction and
a state observer

pre-cond2: Set(TransitionProp)
post-cond2: Set(TransitionProp)
vitality2: Set(StateProp)

About two local interactions

synchr2: Set(TransitionProp)

About a local interaction

synchr1: Set(TransitionProp)
pre-cond3: Set(TransitionProp)
post-cond3: Set(TransitionProp)
vitality3: Set(StateProp)
local-global3: Set(TransitionProp)

About two state
observers

Cells

Towards a Formally Grounded Development Method

Jan 2005 IFIP WG1.3

CC 33'

&

$

%

Cell example About a local interaction : synchr1 and

local-global3 (Structured/Property)

synchr1 (transition property)

An instantiation of the local interaction is synchronized (i.e., executed
simultaneously)/not synchronized with another instantiation of the same;
clearly the two instantiations are performed by different subsystems.

if cond(arg,arg1) and sid.ei(arg) happen then sid1 .ei1 (arg1) happen

or

if cond(arg,arg1) and sid.ei(arg) happen then not sid1 .ei1 (arg1) happen

local-global3 (transition property)

If an instantiation of sid.ei belongs to the label of some transition of some
subsystem that is part of a global transition, then the label of such global
transition must contain some elementary interaction, or vice versa.

if sid.ei(arg) happen and cond(arg,arg1) then ei1 (arg1) happen

or

if ei1 (arg1) happen and cond(arg,arg1) then sid.ei(arg) happen

Towards a Formally Grounded Development Method

Jan 2005 IFIP WG1.3

CC 34'

&

$

%

Lift - Parts and Constituent Features (Structured/Property)

LiftSystem

LiftPlantUsersController_R

Controller_RLiftPlant Users

Users

TRANSIT(Int)
CALL(Floor)

Floor

Controller_R

MOTOR_O(MotorStatus)
DOOR_O(Floor,DoorPosition)
DOOR_POSITION(DoorPositions)
CABIN_POSITION(Floor)
MOTOR_STATUS(Motor_Status)
CALL(Floor)

Floor

MotorStatus

down | up | stop

DoorPosition

open | closed

DoorPositions

List(DoorPosition)

allCloseBut(Floor,DoorPositions)

Towards a Formally Grounded Development Method

Jan 2005 IFIP WG1.3

CC 35'

&

$

%

Lift Properties - (Structured/Property)

Local interactions with the same name and from different subsystems are

synchronized

Users.CALL(f) synchronized with Controller R.CALL(f)

LiftPlant.DOOR POSITION(ground,dps1), . . . LiftPlant.DOOR POSITION(top,dps10)

synchronized with Controller R.DOOR POSITIONS(dps1 :: . . . :: dps10)

if Users.CALL(f) happen then in any case eventually

LiftPlant.cabin position(f) and

LiftPlant.motor status(stop) and

LiftPlant.door position(f) = open

Towards a Formally Grounded Development Method

Jan 2005 IFIP WG1.3

CC 36'

&

$

%

CASL-LTLView (Structured/Property)

dsort st label lab info inf stands for
sorts st, lab, inf

pred : −−→ : inf × st × lab × st

• poSpec.parts = {ds1 , . . . , dsj}, and that DS1 , . . . , DSj are the CASL-LTL

presentations of the data structure specifications ds1 , . . . , dsj respectively

• poSpec.subsyst-Specs = {ssp1 , . . . , sspk}, that SSP1 , . . . , SSPk are the

CASL-LTL presentations of the system specifications ssp1 , . . . , sspk

respectively, and that ELINTERACTION1 , . . . , ELINTERACTIONk be the

specifications of their elementary interactions.

• poSpec.e-features = {ei1 , . . . , ein} the elementary interactions

• poSpec.s-features = {so1 , . . . , som} the state observers

• poSpec.subsystems = {ss1 , . . . , ssr} the subsystems

Towards a Formally Grounded Development Method

Jan 2005 IFIP WG1.3

CC 37'

&

$

%

CASL-LTLView foll’d (Structured/Property)
spec LOCALINTERACTION =

ELINTERACTION1 and . . . and ELINTERACTIONk and Ident then

free type subElInteraction ::= (elInteraction1) | . . . | (elInteractionk)

%% disjoint union of the elementary interaction types of the subsystems

free type localInteraction ::= < , > (ident, subElInteraction)
spec poSpec.name =

FINITESET[ELINTERACTION] and FINITESET[LOCALINTERACTION] and

DS1 and . . . and DSj and SSP1 and . . . and SSPk then

dsort st label FinSet[elInteraction] info FinSet[localInteraction]

ops so1 .name : st × so1 .argTypes → so1 .resType %% state observers

. . .

som .name : st × som .argTypes → som .resType

ss1 .id : st → ss1 .type %% observers of the subsystem states

. . .

ssr .id : st → ssr .type

axioms those formulae corresponding to the cell fillings

Towards a Formally Grounded Development Method

Jan 2005 IFIP WG1.3

CC 38'

&

$

%

Outline

Methods taking into account:

• a software item:

– a simple dynamic system

– a structured dynamic system

– a data structure

• two specification techniques: property-oriented, model-oriented (constructive)

• CASL and CASL-LTL specifications

Illustration on case studies

• in combination with structuring concepts as (Jackson’s) problem frames

Towards a Formally Grounded Development Method

Jan 2005 IFIP WG1.3

CC 39'

&

$

%

Data Structure Items / Property

Data structure

parts

features

1..*

*

Operation

Constituent
Feature

Constructor Predicate

Property-oriented

Data structure property-oriented specification

name: String

*

Data structure specification

parts

*

Predicate definition

name: String
argTypes:Sequence(Type)

p-features

*

Constructor definition

name: String
argTypes:Sequence(Type)

c-features

Property

properties
*

*
Operation definition

name: String
argTypes:Sequence(Type)
resultType: Type

o-features

Towards a Formally Grounded Development Method

Jan 2005 IFIP WG1.3

CC 40'

&

$

%

Data Structure - Property-oriented

predicates
pr(type1, ...,typen)

DataStructureName

constructors
con(type1, ..., typen) or con(type1, ..., typen)?

operations
op(type1, ...,typen): type or op(type1, ...,typen): ? type

Data1 Datar....

About a constructor

def1: Set(DataProp)
ident1: Set(DataProp)

About two constructors

def2: Set(DataProp)
ident2: Set(DataProp)

About two operations

def5: Set(DataProp)
value3: Set(DataProp)

About an operation

def4: Set(DataProp)
value2: Set(DataProp)

About a constructor
 and an operation

def3: Set(DataProp)
value1: Set(DataProp)

Cell filling

About a predicate

truth2: Set(DataProp)

About a constructor
 and a predicate

truth1: Set(DataProp)

About an operation
 and a predicate

truth-def: Set(DataProp)
truth-value: Set(DataProp)

About two predicates

truth3: Set(DataProp)

Towards a Formally Grounded Development Method

Jan 2005 IFIP WG1.3

CC 41'

&

$

%

Floor (Data Structure/Property-oriented)

_ above _(Floor,Floor)

Floor

ground
top

next(Floor): ? Floor
previous(Floor): ? Floor

– There exists a ground and a top

floor, and they are different.

ground 6= top

– next returns the floor immediately above a given one, if it exists.
There is no floor between f and next(f).

def(next(ground))

not def(next(top))

def(next(f)) iff top above f

whenever everything is defined

next(f) above f and not exists f1 • (next(f) above f1 and f1 above f)

whenever everything is defined next(previous(f)) = previous(next(f)) = f

– above is total order over the floors with top as maximum and ground as

minimum

Towards a Formally Grounded Development Method

Jan 2005 IFIP WG1.3

CC 42'

&

$

%

CASL View (Data/Property)

• poSpec.parts = {ds1 , . . . , dsj} w/ DS1 , . . . , DSj CASL-LTL presentations

• poSpec.c-features = {con1 , . . . , conn} the constructors

• poSpec.o-features = {op1 , . . . , opm} the operations

• poSpec.p-features = {pr1 , . . . , prp} the predicates.

spec poSpec.name =

DS1 and . . . and DSj then

type poSpec.name ::= con1 .name(con1 .argTypes)? | . . . | conn .name(conn .argTypes)

ops op1 .name : op1 .argTypes →? op1 .resType

. . .

opm .name : opm .argTypes → opm .resType

preds pr1 .name : pr1 .argTypes

. . .

prp .name : prp .argTypes

axioms

formulae corresponding to the cell fillings

Towards a Formally Grounded Development Method

Jan 2005 IFIP WG1.3

CC 43'

&

$

%

Data Structure - Constructive

Data structure constructive specification

name: String

*

Data structure specification

parts

*

Predicate definition

p-features

*

Constructor definition

c-features
*

Operation definition

o-featuresconditional-rules
*

ConditionalRule

Towards a Formally Grounded Development Method

Jan 2005 IFIP WG1.3

CC 44'

&

$

%

Outline

Methods taking into account:

• a software item:

– a simple dynamic system

– a structured dynamic system

– a data structure

• two specification techniques: property-oriented, model-oriented (constructive)

• CASL and CASL-LTL specifications

Illustration on case studies

• in combination with structuring concepts as (Jackson’s) problem frames

Towards a Formally Grounded Development Method

Jan 2005 IFIP WG1.3

CC 45'

&

$

%

Applying our Specification Methods to Classes of Systems

(“Problem Frames”)

simple system
constructive

specification method

Translation Frame

data structure constructive
specification method

data structure
property-oriented

specification method

simple system
property-oriented

specification method

Information System Frame Control System Frame

structured system
property-oriented

specification method

Towards a Formally Grounded Development Method

Jan 2005 IFIP WG1.3

CC 46'

&

$

%

Information System Frame

Information FunctionSystem

Real World

RequirementsDomainDesign

Information
Requests

Information
Outputs

Sensors

uses

uses

Real World : simple dynamic system (property), signals relevant information

Information Requests/Outputs : data structure (model/constructive)

Information function : with a (model/constructive) data structure (History, ...)

System : simple system (model/constructive)

Towards a Formally Grounded Development Method

Jan 2005 IFIP WG1.3

CC 47'

&

$

%

Conclusion and . . .

Companion method for (algebraic) formal specifications

• Paradigms, techniques, pragmatic characteristics originated from the

underlying theory (e.g. no “use cases” . . . , no OO)

• both visual and explicit presentations

• systematic and inherently rigorous, cell-filling

• well defined underlying formal models

• experimented on sizeable case studies, on students

• “building-bricks” specification tasks for different kinds of software (simple

systems, structured, data structures), at different abstraction level

(property/more abstract, model or constructive/more concrete)

• relevant for real applications, used for requirement specifications, or in

connection with structuring concepts (problem frames)

Towards a Formally Grounded Development Method

Jan 2005 IFIP WG1.3

CC 48'

&

$

%

. . . Perspectives

• Our cell-filling technique can be a basis for generating precise UML models,

or for their inspection (checking all aspects considered)

• Further experiments, new problem frames (business automation, web

applications, distributed mobile systems, . . .)

• Oriented towards CASL and CASL-LTL (algebraic specifications) but

adaptable to other specification/description paradigms

• Supporting tools (graphical editor, type checker, guidelines support, . . .)

Towards a Formally Grounded Development Method

Jan 2005 IFIP WG1.3

Part II

Integrate the specification

development method together

with use cases requirement

description

- Some description is required before a specification

may be written

- Is it possible to establish a connection between both ?

- Guidelines for these tasks

HOW ? (1)
• Use USE CASES

– use case =
• description of interactions between the system under

discussion and external actors, related to the goal of one
particular actor

• description is textual (“familiar”, easy to read) and sums up a
set of scenarios (sequences of interactions between system
and actors)

– quite successful
• easy to use and informal

• easily give an idea of the system that can be discussed with
the client

• a lot of freedom in what should include a use case description,
and how it should be written

– however
• “use cases are wonderful but confusing'' (Cockburn 2000)

• use cases are often imprecise, and used terms are vague or
ambiguous

HOW ? (2)

• Use formal specifications

– lead to precise, unambiguous descriptions

– but difficult to use and impractical in quite a

number of cases

– hard to write/read these specifications

– hard to start with formal specifications while still

working on the requirements (thus, trying to

understand what is the problem about)

HOW ? (3)
• combine advantages of use cases and of formal

specifications
– improving use case based requirements by developing

a companion Formally Grounded specification
[ChoppyReggio2003]

• written in a “visual” notation (diagrams and text)

• with a formal counterpart written in the logical-algebraic
CASL-LTL specification language

• produced following a systematic method, arising questions on
all the aspects of the specified system

– resulting in
• requirement validation, writing the Formally Grounded

specification leads to thoroughly check that requirements

• improved requirements (requirements may be updated)

• improved use case based requirement specification

• a formal specification available for formal analysis

Case study: Auction System
• Online auction system to allow to buy/sell goods

• Innovative because it guarantees that bid placed are
solvent

• Users must first enroll and log on for each session, then
they are able to sell, buy, or browse the available auctions

• Customers have credit with the system used as security
on each bid; and can increase it by asking the system to
debit a certain amount from their credit card, and when sell

• A customer that wishes to sell initiates an auction by
informing the system of the goods to auction with ….

• Customers that wish to follow an auction must first join the
auction, then they may make a bid, or post a message

• Bidders are allowed to place their bids until the auction
closes, and place bids across as many auctions as they
please

Auction System: task 1

Give a Use case based requirement specification

• (UML) Use case diagram

• Use case descriptions
(S. Sendall and A. Strohmeier template)

Use Case buy item under auction

Intention in Context: The intention of the
Customer is to follow the auction, ...

Primary Actor: Customer
Precondition: Customer already identified
Main Success Scenario:
1. Customer searches for an item under auction

(search item).
2. Customer requests to join the item auction.
3. System presents a view of the auction
...

buy item under auction (contd)

Steps 4-5 can be repeated according to the
intentions and bidding policy of the Customer

4. Customer makes a bid on the item to System.

5. System validates the bid, records it, secures the
bid amount from Customer's credit, … informs
Participants of new high bid, and updates the
view of the auction

6. System closes the auction with a winning bid
by Customer.

Extensions: ...

buy item under auction (extens.)

Extensions:

 2a. C requests System not to pursue item further:
2a.1. System permits Customer to choose another

auction, or go back to an earlier point in the
selection process; uc continues at step 2.

 3a. System informs Customer that auction has not
started: use case ends in failure.

 3b. System informs Customer that auction is
closed: use case ends in failure.

 ...

Auction System: task 2

By looking at the Use case diagram give

• Context View (initial version)

system of type AuctionSystem =

system to develop

systems of type Person =

actors

structured dynamic

system type

configuration diagram
composing subsystems

simple dynamic

system type

(specified apart)

closed

system

Auction System: task 3
By looking at use case descriptions one after the

other (here Buy Item under Auction) give

• AuctionSystem specification interface

Elementary

interactions

State observers

– simple dynamic system characterized by its states and labelled transitions

– labelled transition =

 state change + label (set of elementary interactions with external world)

– states abstractly characterized by “state observers”

Data type

Tested or updated

information

interactions

towards actors or

received by actors

Auction System: task 3 (cont.)
• Data View

operations

predefined types

predicates

constructors

data type
Data used

to type

parameters

and results

of state

observers

and

elementary

interactions

Auction System: task 4
• find the properties about AuctionSystem by filling

“forms” generated by the elementary
interactions and state observers found in the
previous task systematically covering “all” its
aspects

based on a many-sorted, first-order, CTL*-style
temporal logic with edge formulae

• In the meantime
– previous diagrams may be modified

– new state observers may be added

(thus the forms to be filled may be updated consequently)

– original use case based requirement specification may
be modified to reflect the better insights on the
AuctionSystem gained while looking for properties

Auction System: task 5

(sample) Properties on CUSTOMER_JOIN_AUCTION

Form fragment

• pre/postcondition
if CUSTOMER_JOIN_AUCTION(sk) happen then

…condition about state observers on source state (of any

transition having that elementary interaction in its label) …

if CUSTOMER_JOIN_AUCTION(sk) happen then

…condition about state observers target states (of any

transition having that elementary interaction in its label) …

• Problems/Questions
– Does the included use case search item ends having selected one

auction or one item?

– Can an auction selected by search item be in any status (e.g.,
closed or not yet started)?

– Can a Customer try to join a closed or not-started auction?

– Can a Customer join an auction to which (s)he is already joined?

(sample) Properties on CUSTOMER_JOIN_AUCTION

if CUSTOMER_JOIN_AUCTION(sk) happen then

exists id:Identification s.t. is_Identifed(id,sk) and

exists aid:Auction_Id s.t.

selected_Auctions(sk) = {aid} and

status(infoAbout(aid)) = active and

joinednxt(sk,aid) and

in any case next

AS_SHOW_AUCTION(sk,view(infoAbout(aid))
happen

S
ta

te
 o

b
s
e
rv

e
r

o
n

s
o
u
rc

e
 s

ta
te

State observer on target state

(sample) Properties on credit
Form fragment

• how change

if credit(id) = x and creditnxt(id) = y and x y then
…condition about id, x and y and
some elementary interactions must happen in that
transition (belong to its label) …

Property
if creditnxt(id) = credit(i) - i and i> 0 then
exists sk:SessionKey, ai:AuctionId s.t.
AS_BID_OK(sk,ai,i) happen and is_Identified(id,sk)

• Problems/Questions

– It is true that a Customer using the AuctionSystem only

for selling items will be never able to collect her/his

money? Moreover, can a buying Customer recover

her/his money when (s)he is no more interested in buying?

Auction System: task 5

Revised Use case based requirement specification

New Use case diagram

new
removed

search

item

Revised ‘‘buy item under auction’’

Intention in Context: The intention of the Customer is
to follow the auction, ...

Primary Actor: Customer

Precondition: Customer already identified and selected
one active auction NEW

Main Success Scenario:

1. Customer searches for an item under auction (search

item). REMOVED

2. Customer requests to join the item auction.

3. System presents a view of the auction

...

buy item under auction (contd)

Steps 4-5 can be repeated according to the
intentions and bidding policy of the Customer

4. Customer makes a bid on the item to System.

5. System validates the bid, records it, secures the
bid amount from Customer's credit, … informs
Participants of new high bid REMOVED, and
updates the view of the auction

6. System closes the auction with a winning bid
by Customer.

Extensions: ...

buy item under auction (extens.)
Extensions:
 2a. C requests System not to pursue item further:

2a.1. System permits Customer to choose another auction, or go
back to an earlier point in the selection process; uc continues
at step 2.

 3a The Customer is the Seller of the auction; System
informs Customer that (s)he cannot join the auction.
Use case ends with failure NEW

3a. System informs Customer that auction has not started:
use case ends in failure. REMOVED

 3b. System informs Customer that auction is closed: use
case ends in failure. REMOVED

 ...

Conclusion
• proposed a method to review use case based

requirements by building a companion Formally Grounded
specification

– as result
• initial requirements examined in a systematic way by looking at

the various aspects of the considered system

• original use case based requirements updated whenever an
aspect of the system is enlightened

• the Formally Grounded specification (diagrams plus textual
annotations) could be used as an alternative requirement
document

• the CASL-LTL specification corresponding to the Formally
Grounded one is also available, e.g., for formal analysis

• building directly the Formally Grounded specification not
as much as effective as the proposed combination
– Formally Grounded specification ingredients (elementary

interactions and state observers) finer grained than system
functionalities, thus hard to find them just considering the problem

Auction System Experiment
• medium-size case study

• starting use case requirements
– not produced by ourselves

– quite accurate and presented using a well-organized template

• positive outcome
– detected many problematic or unclear aspects in the original use

case based Requirements

• explicit auctions browsing functionality

• auctions should be performed in a chat-like way

• need for a decrease-credit functionality

• two different Customers may be the same person

• a Customer may disconnect by the System by hers\his own
choice, and not only after sometime (s)he is doing nothing

• a Customer cannot unregister from the System when (s)he is
the seller or has the high bid in an auction

• made explicit that when a Customer unregisters any left credit
is seized by the Auction System owner

• …

Related work: inspection techniques

• Inspection techniques for requirement spec:

ad hoc techniques or check-lists

 ‘‘Is there any missing functionality, that is, do the actors

have goals that must be fulfilled, but that have not been

described in use cases?’’

• Our ‘‘inspection’’: build a companion formal

specification with a form-filling technique

leads to a systematic and precise requirement

examination

 ‘‘find and list all the ways the credit state observer may

be updated in the various scenarios of all use case’’

 -> credit decreasing needed !!

Our high quality requirements method
Task 1: use case diagram &
 descriptions (Sendall & Strohmeier)

Iterative construction of the specification:

Task 2: initial Context View
 configuration diagram & cooperation diagram

Task 3: for each use case
 - elementary interactions & state observers
 > cooperation diagram (update)
 - Data View (data structures)

Task 4: properties (form filling method)
 > update elem inter, state obs, data struct

Task 5: in parallel, record questions
 > update use case accordingly

and more …
- General requirement formal specification
development method

- Initially aimed for CASL/CASL-LTL languages

- Could be used with other specification languages

(colored/high level Petri nets, …)

- May be used in combination with informal
notations/methods: use cases, UML, problem
frames, …

- Architectural styles may be used to work further

towards the design specification

CC 4'

&

$

%

Complementary related works

• How to write readable CASL specifications, avoiding semantic pitfalls

http://www.brics.dk/Projects/CoFI
– Roggenbach and Mossakowski for the basic data types library
– Bidoit and Mosses in the CASL reference manual

• Bidoit and Hennicker [e.g. FOSSACS02] explore the use of observability

concepts which are found to be useful and relevant for writing specifications,

and the combined use of constructors and observers

• Blanc [PhD 2002, Cachan] proposes guidelines for the iterative and

incremental development of specifications

• Choppy and Reggio [WADT99] propose to help requirement analysis by

generating CASL and CASL-LTL skeletons associated with Jackson’s problem

frames (used as structuring concepts to start the problem analysis)

• Choppy and Heisel [WADT02] propose to go on with using the structuring

concepts provided by architectural styles to support design specifications and

explore the combination with the problem frames used to begin with
Towards a Formally Grounded Development Method

Jan 2005 IFIP WG1.3

D
if
fe

re
n
t

a
im

s

Related work
• formal specification of requirements, e.g.

– A. van Lamsweerde and his group

• formally specifications of goal-oriented requirements plus

analysis by means of formal techniques

– R.Dromey

• “Behaviour Tree” a formal-visual notation to specify the

requirements, and a method to derive from them the

architectural structuring of the system

N
o
 v

a
lid

a
ti
o
n
 \

in
s
p
e
c
ti
o
n

m
e
th

o
d

• “more precise” specification of requirements, e.g.

– S. Sendall and A. Strohmeier

• operation schemas (written in OCL) and system interface

protocols (UML statecharts) to complement use cases

– E. Astesiano- G. Reggio

• Tight-structured UML based method for the precise

specification of the requirements, where use case are

modelled by statecharts

