
Cost Linear Temporal Logic for Verification

Maximilien Colange, Dimitri Racordon, Didier Buchs

University of Geneva

January 30, 2015

Quantitative Verification

Qualitative Verification

Yes-No Question

Quantitative Verification

Question has an answer in a domain D

D continuous (time, probability) ⇒ dedicated models
timed, hybrid, stochastic . . .

D discrete ⇒ same models as qualitative setting

yes, but inefficient

We focus on discrete quantitative

Quantitative Verification

Qualitative Verification

Yes-No Question

Quantitative Verification

Question has an answer in a domain D

D continuous (time, probability) ⇒ dedicated models
timed, hybrid, stochastic . . .

D discrete ⇒ same models as qualitative setting

yes, but inefficient

We focus on discrete quantitative

Quantitative Verification

Qualitative Verification

Yes-No Question

Quantitative Verification

Question has an answer in a domain D

D continuous (time, probability) ⇒ dedicated models
timed, hybrid, stochastic . . .

D discrete ⇒ same models as qualitative setting

yes, but inefficient

We focus on discrete quantitative

Quantitative Verification

Qualitative Verification

Yes-No Question

Quantitative Verification

Question has an answer in a domain D

D continuous (time, probability) ⇒ dedicated models
timed, hybrid, stochastic . . .

D discrete ⇒ same models as qualitative setting

yes, but inefficient

We focus on discrete quantitative

Quantitative Verification

Qualitative Verification

Yes-No Question

Quantitative Verification

Question has an answer in a domain D

D continuous (time, probability) ⇒ dedicated models
timed, hybrid, stochastic . . .

D discrete ⇒ same models as qualitative setting

yes, but inefficient

We focus on discrete quantitative

Motivating Example

Dining philosophers (ressource sharing model)

N philosophers, N forks

philo either thinking, or eating

2 forks needed to eat

Starvation = does a philo not eat forever?

In real life, starvation occurs in finite time

How long a philo thinks? (discrete time)

Bounds on ⇒ max/min thinking time (per philo, globally . . .)

Motivating Example

Dining philosophers (ressource sharing model)

N philosophers, N forks

philo either thinking, or eating

2 forks needed to eat

Starvation = does a philo not eat forever?

In real life, starvation occurs in finite time

How long a philo thinks? (discrete time)

Bounds on ⇒ max/min thinking time (per philo, globally . . .)

Motivating Example

Dining philosophers (ressource sharing model)

N philosophers, N forks

philo either thinking, or eating

2 forks needed to eat

Starvation = does a philo not eat forever?

In real life, starvation occurs in finite time

How long a philo thinks? (discrete time)

Bounds on ⇒ max/min thinking time (per philo, globally . . .)

Motivating Example

Instrumentation: How to measure thinking (logical) time?

add a variable timerp

i f (p h i l o p t h i n k s) ++t i m e r p ;
i f (p h i l o p e a t s) t i m e r p = 0 ;

Qualitative Verification of the instrumented model.

Numerous Drawbacks

model modification = strong semantical risk

translate quantitative to qualitative: values known a priori

Motivating Example

Instrumentation: How to measure thinking (logical) time?

add a variable timerp

i f (p h i l o p t h i n k s) ++t i m e r p ;
i f (p h i l o p e a t s) t i m e r p = 0 ;

Qualitative Verification of the instrumented model.

Numerous Drawbacks

model modification = strong semantical risk

translate quantitative to qualitative: values known a priori

Objective

Verification principle: model and property are independent
Quantitative measure should remain in the logic.

Proposal

Use a quantitative logic towards “discrete quantitative” verification

Linear Temporal Logic very popular

extend LTL with counting

LTL≤ [Kuperberg and Boom, 2012]

LTL≤ = LTL + a U operator that counts.
U≤ : counts ¬ until

1 1 3

find a n that dominates # of ¬
{possible n} ↑-closed

same n for all occurrences of U≤ in the formula

JφK≤ = inf{possible n}

LTL≤ [Kuperberg and Boom, 2012]

LTL≤ = LTL + a U operator that counts.
U≤ : counts ¬ until

1 1 3

find a n that dominates # of ¬
{possible n} ↑-closed

same n for all occurrences of U≤ in the formula

JφK≤ = inf{possible n}

LTL≤ [Kuperberg and Boom, 2012]

LTL≤ = LTL + a U operator that counts.
U≤ : counts ¬ until

1 1 3

find a n that dominates # of ¬
{possible n} ↑-closed

same n for all occurrences of U≤ in the formula

JφK≤ = inf{possible n}

LTL≤ [Kuperberg and Boom, 2012]

LTL≤ = LTL + a U operator that counts.
U≤ : counts ¬ until

1 1 3

find a n that dominates # of ¬
{possible n} ↑-closed

same n for all occurrences of U≤ in the formula

JφK≤ = inf{possible n}

LTL≤ [Kuperberg and Boom, 2012]

LTL≤ = LTL + a U operator that counts.
U≤ : counts ¬ until

1 1 3

find a n that dominates # of ¬

{possible n} ↑-closed

same n for all occurrences of U≤ in the formula

JφK≤ = inf{possible n}

LTL≤ [Kuperberg and Boom, 2012]

LTL≤ = LTL + a U operator that counts.
U≤ : counts ¬ until

1 1 3

find a n that dominates # of ¬
{possible n} ↑-closed

same n for all occurrences of U≤ in the formula

JφK≤ = inf{possible n}

LTL≤ [Kuperberg and Boom, 2012]

LTL≤ = LTL + a U operator that counts.
U≤ : counts ¬ until

1 1 3

find a n that dominates # of ¬
{possible n} ↑-closed

same n for all occurrences of U≤ in the formula

JφK≤ = inf{possible n}

LTL≤ [Kuperberg and Boom, 2012]

LTL≤ = LTL + a U operator that counts.
U≤ : counts ¬ until

1 1 3

find a n that dominates # of ¬
{possible n} ↑-closed

same n for all occurrences of U≤ in the formula

JφK≤ = inf{possible n}

LTL> [Kuperberg and Boom, 2012]

LTL> = LTL + a R operator that counts.
R> : counts while

0 10

find a n dominated by # of

{possible n} ↓-closed

same n for all occurrences of R> in the formula

JφK> = sup{possible n}

LTL> [Kuperberg and Boom, 2012]

LTL> = LTL + a R operator that counts.
R> : counts while

0 10

find a n dominated by # of

{possible n} ↓-closed

same n for all occurrences of R> in the formula

JφK> = sup{possible n}

LTL> [Kuperberg and Boom, 2012]

LTL> = LTL + a R operator that counts.
R> : counts while

0 10

find a n dominated by # of

{possible n} ↓-closed

same n for all occurrences of R> in the formula

JφK> = sup{possible n}

LTL> [Kuperberg and Boom, 2012]

LTL> = LTL + a R operator that counts.
R> : counts while

0 10

find a n dominated by # of

{possible n} ↓-closed

same n for all occurrences of R> in the formula

JφK> = sup{possible n}

LTL> [Kuperberg and Boom, 2012]

LTL> = LTL + a R operator that counts.
R> : counts while

0 10

find a n dominated by # of

{possible n} ↓-closed

same n for all occurrences of R> in the formula

JφK> = sup{possible n}

LTL> [Kuperberg and Boom, 2012]

LTL> = LTL + a R operator that counts.
R> : counts while

0 10

find a n dominated by # of

{possible n} ↓-closed

same n for all occurrences of R> in the formula

JφK> = sup{possible n}

LTL> [Kuperberg and Boom, 2012]

LTL> = LTL + a R operator that counts.
R> : counts while

0 10

find a n dominated by # of

{possible n} ↓-closed

same n for all occurrences of R> in the formula

JφK> = sup{possible n}

LTL> [Kuperberg and Boom, 2012]

LTL> = LTL + a R operator that counts.
R> : counts while

0 10

find a n dominated by # of

{possible n} ↓-closed

same n for all occurrences of R> in the formula

JφK> = sup{possible n}

Example

G (=⇒ (⊥ U≤))
counts the minimal distance between any and the next

. . .

1 0 2

(u, n) |= φ iff n dominates every U≤

here (u, n) |= φ iff n ≥ 2

JφK≤(u) = inf{possible n} = 2

Example

G (=⇒ (⊥ U≤))
counts the minimal distance between any and the next

. . .

1 0 2

(u, n) |= φ iff n dominates every U≤

here (u, n) |= φ iff n ≥ 2

JφK≤(u) = inf{possible n} = 2

Negation and Duality

in LTL≤ and LTL>, cost operators cannot be negated

Remark

(u, n) |= a U≤ b ⇐⇒ (u, n) 6|= ¬a R> ¬b

Duality through negation

LTL≤
¬−−−⇀↽−−−
¬

LTL>

and push negations to leaves (Negative Normal Form)

Negation and Semantics

(u, n) |= φ ⇐⇒ (u, n) 6|= ¬φ

. . .

JφK≤(u)
= inf{n}

J¬φK>(u)
= sup{n}

(u, n) |= φ

(u, n) 6|= φ

semantically, ¬ is ±1

Negation and Semantics

(u, n) |= φ ⇐⇒ (u, n) 6|= ¬φ

. . .

JφK≤(u)
= inf{n}

J¬φK>(u)
= sup{n}

(u, n) |= φ

(u, n) 6|= φ

semantically, ¬ is ±1

And LTL?

Syntactically

LTL≤ LTL>LTL

Semantically (φ ∈ LTL)

u ` φ ⇐⇒ ∀n ∈ N.(u, n) |= φ

LTL≤ LTL LTL>

JφK≤(u) = 0 u ` φ JφK>(u) = +∞
JφK≤(u) = +∞ u 6` φ JφK>(u) = 0

LTL≤ and LTL> model-checking

LTL≤ and LTL> more expressive than LTL
New problems arise

(u, n) |= φ? for a given n ∈ N
∃u
∀u

is JφK≤ bounded over a given language L?

decidable when L regular [Bojańczyk and Colcombet, 2006]

actual values of bounds over a given set L

supLJφK≤ (LTL> seems appropriate)
infLJφK≤ (LTL≤ seems appropriate)

LTL≤ and LTL> model-checking

LTL≤ and LTL> more expressive than LTL
New problems arise

(u, n) |= φ? for a given n ∈ N
∃u
∀u

is JφK≤ bounded over a given language L?

decidable when L regular [Bojańczyk and Colcombet, 2006]

actual values of bounds over a given set L

supLJφK≤ (LTL> seems appropriate)
infLJφK≤ (LTL≤ seems appropriate)

LTL≤ and LTL> model-checking

LTL≤ and LTL> more expressive than LTL
New problems arise

(u, n) |= φ? for a given n ∈ N
∃u
∀u

is JφK≤ bounded over a given language L?

decidable when L regular [Bojańczyk and Colcombet, 2006]

actual values of bounds over a given set L

supLJφK≤ (LTL> seems appropriate)
infLJφK≤ (LTL≤ seems appropriate)

Following the Automata Approach: LTL

M
ω-automaton

φ ∈ LTL
Aφ

ω-automaton

M×Aφ
Emptiness

check
Yes/No

(+ cter-example)

Following the Automata Approach: LTL>

M
ω-automaton

φ ∈ LTL>
Aφ

counting aut.

M×Aφ Quantitative
check

Value

Cost Register Automata
[Bojańczyk and Colcombet, 2006]

Transition-Based Generalized Büchi Automaton
+ finite set of counters
actions on counter: observe (o), increment (i), reset (r), ε

a/i, ε b/ε, i

a/i, ε b/ε, i

b/or, i

a/i, or

2 counters

1st one counts consecutive a’s

2nd one counts consecutive b’s

Val(ρ) = min{observed values}
= min # consecutive occurrences of the same letter

Cost Register Automata
[Bojańczyk and Colcombet, 2006]

Transition-Based Generalized Büchi Automaton
+ finite set of counters
actions on counter: observe (o), increment (i), reset (r), ε

a/i, ε b/ε, i

a/i, ε b/ε, i

b/or, i

a/i, or

2 counters

1st one counts consecutive a’s

2nd one counts consecutive b’s

Val(ρ) = min{observed values}
= min # consecutive occurrences of the same letter

Cost Register Automata Semantics

>-automata

Val>(ρ) = inf{observed counter values}
JAK>(u) = supρ acc. run on u Val>(ρ)

actions: i, or, r, ε

≤-automata

Val≤(ρ) = sup{observed counter values}
JAK≤(u) = infρ acc. run on u Val≤(ρ)

actions: io, r, ε

Cost Register Automata Semantics

>-automata

Val>(ρ) = inf{observed counter values}
JAK>(u) = supρ acc. run on u Val>(ρ)

actions: i, or, r, ε

≤-automata

Val≤(ρ) = sup{observed counter values}
JAK≤(u) = infρ acc. run on u Val≤(ρ)

actions: io, r, ε

From LTL> to >-automata

Translation idea [Kuperberg, 2012]

similar to LTL → Büchi translation

accepting conditions on the transitions

one counter for each R>

counts the occurrences of lhs of R>, as expected

Automaton for φ = G(a =⇒ ⊥U≤b)

JφK≤(u) = max distance between any a and the next b
>/ε

ab̄/or

>/ε

ab̄/ε

ab̄/i
b̄/or

b̄/ε

b̄/i

non-determinism

run with largest value
wins: useless transitions

safe to remove useless
transitions

guess the a for which the max is reached

guess: or just before b

wrong guesses yield runs with smaller values,
eliminated by sup in JAK>

Automaton for φ = G(a =⇒ ⊥U≤b)

JφK≤(u) = max distance between any a and the next b
>/ε

ab̄/or

>/ε

ab̄/ε

ab̄/i
b̄/or

b̄/ε

b̄/i

non-determinism

run with largest value
wins: useless transitions

safe to remove useless
transitions

guess the a for which the max is reached

guess: or just before b

wrong guesses yield runs with smaller values,
eliminated by sup in JAK>

Automaton for φ = G(a =⇒ ⊥U≤b)

JφK≤(u) = max distance between any a and the next b
>/ε

ab̄/or

>/ε

ab̄/ε

ab̄/i
b̄/or

b̄/ε

b̄/i

non-determinism

run with largest value
wins: useless transitions

safe to remove useless
transitions

guess the a for which the max is reached

guess: or just before b

wrong guesses yield runs with smaller values,
eliminated by sup in JAK>

Automaton for φ = G(a =⇒ ⊥U≤b)

JφK≤(u) = max distance between any a and the next b
>/ε

ab̄/or

>/ε

ab̄/ε

ab̄/i
b̄/or

b̄/ε

b̄/i

non-determinism

run with largest value
wins: useless transitions

safe to remove useless
transitions

guess the a for which the max is reached

guess: or just before b

wrong guesses yield runs with smaller values,
eliminated by sup in JAK>

Automaton for φ = G(a =⇒ ⊥U≤b)

JφK≤(u) = max distance between any a and the next b
>/ε

ab̄/or

>/ε

ab̄/ε

ab̄/i
b̄/or

b̄/ε

b̄/i

non-determinism

run with largest value
wins: useless transitions

safe to remove useless
transitions

guess the a for which the max is reached

guess: or just before b

wrong guesses yield runs with smaller values,
eliminated by sup in JAK>

Automaton for φ = G(a =⇒ ⊥U≤b)

JφK≤(u) = max distance between any a and the next b
>/ε

ab̄/or

>/ε

ab̄/ε

ab̄/i
b̄/or

b̄/ε

b̄/i

non-determinism

run with largest value
wins: useless transitions

safe to remove useless
transitions

guess the a for which the max is reached

guess: or just before b

wrong guesses yield runs with smaller values,
eliminated by sup in JAK>

Automaton for φ = G(a =⇒ ⊥U≤b)

JφK≤(u) = max distance between any a and the next b
>/ε

ab̄/or

>/ε

ab̄/ε

ab̄/i
b̄/or

b̄/ε

b̄/i

non-determinism

run with largest value
wins: useless transitions

safe to remove useless
transitions

guess the a for which the max is reached

guess: or just before b

wrong guesses yield runs with smaller values,
eliminated by sup in JAK>

Compute the Upper Bound of a
>-Automata

Several sub-problems.

Boundedness

Is supJAK> finite?

Exact value

If finite, value of supJAK>?

Boundedness [Colcombet, 2009]

Property

supJAK> =∞ iff ∃ρ acc. run s.t.
every orγ is preceded by a cycle that increments γ and never or it
(γ-cycle).

i1 or1

i2
i1

or2

Upper bound

if bounded, supJAK> ≤ |QA|

Boundedness [Colcombet, 2009]

Property

supJAK> =∞ iff ∃ρ acc. run s.t.
every orγ is preceded by a cycle that increments γ and never or it
(γ-cycle).

i1 or1

i2
i1

or2

Upper bound

if bounded, supJAK> ≤ |QA|

Boundedness [Colcombet, 2009]

Property

supJAK> =∞ iff ∃ρ acc. run s.t.
every orγ is preceded by a cycle that increments γ and never or it
(γ-cycle).

i1 or1

i2
i1

or2

Upper bound

if bounded, supJAK> ≤ |QA|

Boundedness [Colcombet, 2009]

Property

supJAK> =∞ iff ∃ρ acc. run s.t.
every orγ is preceded by a cycle that increments γ and never or it
(γ-cycle).

i1 or1

i2
i1

or2

Upper bound

if bounded, supJAK> ≤ |QA|

Back to LTL

Büchi Emptiness Check

u ∈ L(A) iff ∃ acc. run on u
possible early answer

Bound Computation

supJAK> = supall acc. runs ρVal>(ρ)
no early break is possible
but once a candidate n is found, all values < n are ruled out

Problem: remove runs of value < n in A

Back to LTL

Büchi Emptiness Check

u ∈ L(A) iff ∃ acc. run on u
possible early answer

Bound Computation

supJAK> = supall acc. runs ρVal>(ρ)
no early break is possible
but once a candidate n is found, all values < n are ruled out

Problem: remove runs of value < n in A

Back to LTL

Problem

INPUT: φ ∈ LTL>, n ∈ N
OUTPUT: φ[n] ∈ LTL s.t. u ` φ[n] ⇐⇒ JφK>(u) ≥ n

for φ, ψ ∈ LTL

(φ R> ψ)[0] ≡ φ R ψ
(φ R> ψ)[n] ≡ (φ ∧ X (φ R> ψ)[n − 1]) R ψ

otherwise (φ ./ ψ)[n] = φ[n] ./ ψ[n]

φ = a R> b, n = 1

(a ∧ X (a R b)) R b

n is ”hardcoded” in φ[n]

Back to LTL

Problem

INPUT: φ ∈ LTL>, n ∈ N
OUTPUT: φ[n] ∈ LTL s.t. u ` φ[n] ⇐⇒ JφK>(u) ≥ n

for φ, ψ ∈ LTL

(φ R> ψ)[0] ≡ φ R ψ
(φ R> ψ)[n] ≡ (φ ∧ X (φ R> ψ)[n − 1]) R ψ

otherwise (φ ./ ψ)[n] = φ[n] ./ ψ[n]

φ = a R> b, n = 1

(a ∧ X (a R b)) R b

n is ”hardcoded” in φ[n]

Back to LTL

Problem

INPUT: φ ∈ LTL>, n ∈ N
OUTPUT: φ[n] ∈ LTL s.t. u ` φ[n] ⇐⇒ JφK>(u) ≥ n

for φ, ψ ∈ LTL

(φ R> ψ)[0] ≡ φ R ψ
(φ R> ψ)[n] ≡ (φ ∧ X (φ R> ψ)[n − 1]) R ψ

otherwise (φ ./ ψ)[n] = φ[n] ./ ψ[n]

φ = a R> b, n = 1

(a ∧ X (a R b)) R b

n is ”hardcoded” in φ[n]

LTL to remove runs

Recall

Jφ1 ∧φ2K> = sup{n possible for φ1 AND φ2} = min(Jφ1K>, Jφ2K>)

u ` φ[n] ⇐⇒ JφK>(u) ≥ n

Jφ[n]K>(u) =

{
+∞ if JφK>(u) ≥ n

0 otherwise

Jφ ∧ φ[n]K>(u) =

{
JφK>(u) if JφK>(u) ≥ n

0 otherwise

φ[n] refines φ by forbidding words of value < n

If n ≤ supJφK> then supJφ ∧ φ[n]K> = supJφK>

LTL to remove runs

Recall

Jφ1 ∧φ2K> = sup{n possible for φ1 AND φ2} = min(Jφ1K>, Jφ2K>)

u ` φ[n] ⇐⇒ JφK>(u) ≥ n

Jφ[n]K>(u) =

{
+∞ if JφK>(u) ≥ n

0 otherwise

Jφ ∧ φ[n]K>(u) =

{
JφK>(u) if JφK>(u) ≥ n

0 otherwise

φ[n] refines φ by forbidding words of value < n

If n ≤ supJφK> then supJφ ∧ φ[n]K> = supJφK>

LTL to remove runs

Recall

Jφ1 ∧φ2K> = sup{n possible for φ1 AND φ2} = min(Jφ1K>, Jφ2K>)

u ` φ[n] ⇐⇒ JφK>(u) ≥ n

Jφ[n]K>(u) =

{
+∞ if JφK>(u) ≥ n

0 otherwise

Jφ ∧ φ[n]K>(u) =

{
JφK>(u) if JφK>(u) ≥ n

0 otherwise

φ[n] refines φ by forbidding words of value < n

If n ≤ supJφK> then supJφ ∧ φ[n]K> = supJφK>

LTL to remove runs

Recall

Jφ1 ∧φ2K> = sup{n possible for φ1 AND φ2} = min(Jφ1K>, Jφ2K>)

u ` φ[n] ⇐⇒ JφK>(u) ≥ n

Jφ[n]K>(u) =

{
+∞ if JφK>(u) ≥ n

0 otherwise

Jφ ∧ φ[n]K>(u) =

{
JφK>(u) if JφK>(u) ≥ n

0 otherwise

φ[n] refines φ by forbidding words of value < n

If n ≤ supJφK> then supJφ ∧ φ[n]K> = supJφK>

Refinement loop for upper bound

Repeat until Aφ has no more accepting runs

Find an acc. run ρ in Aφ
Let n = Val>(ρ)
Then n ≤ supJAK>
Update φ← φ ∧ φ[n] and restart

Requires supJAφ0K> <∞
supJAφ0K> = supρ acc. run Val>(ρ)
Guarantees that every found ρ has a finite value

easy to implement: formulae manipulations + Büchi EC

refinement: less and less behaviors

Refinement loop for upper bound

Repeat until Aφ has no more accepting runs

Find an acc. run ρ in Aφ
Let n = Val>(ρ)
Then n ≤ supJAK>
Update φ← φ ∧ φ[n] and restart

Requires supJAφ0K> <∞
supJAφ0K> = supρ acc. run Val>(ρ)
Guarantees that every found ρ has a finite value

easy to implement: formulae manipulations + Büchi EC

refinement: less and less behaviors

Refinement loop for upper bound

Repeat until Aφ has no more accepting runs

Find an acc. run ρ in Aφ
Let n = Val>(ρ)
Then n ≤ supJAK>
Update φ← φ ∧ φ[n] and restart

Requires supJAφ0K> <∞
supJAφ0K> = supρ acc. run Val>(ρ)
Guarantees that every found ρ has a finite value

easy to implement: formulae manipulations + Büchi EC

refinement: less and less behaviors

Loop for boundedness + exact value

INPUT : φ0 and M

B ← |Aφ0 | × |M|
// i f f i n i t e , supJAφ0K> ≤ |Aφ0 ×M| ≤ B
φ← φ0

n← 0

whi le (L(Aφ ×M) 6= ∅) {
ρ← an a c c e p t i n g run i n Aφ ×M
n← Val>(ρ)

i f (n > B)
return unbounded

e l s e
φ← φ0 ∧ φ0[n]

}
return n

Our tool Spaction

CLTL
parser

CLTL
formulae

CLTL to
Automata

counter
automata

Boundedness
checks

CLTL
to LTL

LTL
formulae

TGBA

emptiness
check

model

Divine

SPOT
[LRDE, 2015]SPACTION

loop for bound computation

Conclusion

CLTL = nice extension of LTL

expressivity

counter automata = nice extension of ω-automata

separate the logics from the model

algorithm for bound computation

relies on ω-automata emptiness check

working tool (in progress)

What’s next?

examples and use cases

more abstractions and refinements

boundedness: smaller automata, fewer counters
exact value: smaller synchronized products

relaxed versions: supJA1K> ≤ n ∗ supJA2K>
variants and generalization

Bibliography

Bojańczyk, M. and Colcombet, T. (2006).

Bounds in ω-regularity.
In Logic in Computer Science, 2006 21st Annual IEEE Symposium on, pages 285–296. IEEE.

Colcombet, T. (2009).

The theory of stabilisation monoids and regular cost functions.
In Automata, languages and programming, pages 139–150. Springer.

Kuperberg, D. (2012).

Étude de classes de fonctions de coût régulières.
PhD thesis, Université Paris Diderot.

Kuperberg, D. and Boom, M. V. (2012).

On the expressive power of cost logics over infinite words.
In Automata, Languages, and Programming, pages 287–298. Springer.

LRDE (2005-2015).

SPOT home page.
http://spot.lip6.fr/.

http://spot.lip6.fr/

