Cost Linear Temporal Logic for Verification

Maximilien Colange, Dimitri Racordon, Didier Buchs

University of Geneva
January 30, 2015

Quantitative Verification

Qualitative Verification

Yes-No Question

Quantitative Verification
Question has an answer in a domain D

Quantitative Verification

Qualitative Verification

Yes-No Question

Quantitative Verification

Question has an answer in a domain D

- D continuous (time, probability) \Rightarrow dedicated models timed, hybrid, stochastic ...

Quantitative Verification

Qualitative Verification

Yes-No Question

Quantitative Verification

Question has an answer in a domain D

- D continuous (time, probability) \Rightarrow dedicated models timed, hybrid, stochastic ...
- D discrete \Rightarrow same models as qualitative setting

Quantitative Verification

Qualitative Verification

Yes-No Question

Quantitative Verification

Question has an answer in a domain D

- D continuous (time, probability) \Rightarrow dedicated models timed, hybrid, stochastic ...
- D discrete \Rightarrow same models as qualitative setting
- yes, but inefficient

Quantitative Verification

Qualitative Verification

Yes-No Question

Quantitative Verification

Question has an answer in a domain D

- D continuous (time, probability) \Rightarrow dedicated models timed, hybrid, stochastic ...
- D discrete \Rightarrow same models as qualitative setting
- yes, but inefficient

We focus on discrete quantitative

Motivating Example

Dining philosophers (ressource sharing model)

- N philosophers, N forks
- philo either thinking, or eating
- 2 forks needed to eat
- Starvation $=$ does a philo not eat forever?

Motivating Example

Dining philosophers (ressource sharing model)

- N philosophers, N forks
- philo either thinking, or eating
- 2 forks needed to eat
- Starvation $=$ does a philo not eat forever?

In real life, starvation occurs in finite time

Motivating Example

Dining philosophers (ressource sharing model)

- N philosophers, N forks
- philo either thinking, or eating
- 2 forks needed to eat
- Starvation $=$ does a philo not eat forever?

In real life, starvation occurs in finite time

- How long a philo thinks? (discrete time)
- Bounds on \Rightarrow max/min thinking time (per philo, globally ...)

Motivating Example

Instrumentation: How to measure thinking (logical) time?
add a variable timer $_{p}$
if (philo p thinks) + timer $_{p}$;
if (philo p eats) timer ${ }_{p}=0$;
Qualitative Verification of the instrumented model.

Motivating Example

Instrumentation: How to measure thinking (logical) time?
add a variable timer $_{p}$
if (philo p thinks) + timer $_{p}$;
if (philo p eats) timer ${ }_{p}=0$;
Qualitative Verification of the instrumented model.
Numerous Drawbacks

- model modification $=$ strong semantical risk
- translate quantitative to qualitative: values known a priori

Objective

Verification principle: model and property are independent Quantitative measure should remain in the logic.

Proposal

Use a quantitative logic towards "discrete quantitative" verification

- Linear Temporal Logic very popular
- extend LTL with counting

LTL \leq [Kuperberg and Boom, 2012]

$\mathrm{LTL} \leq=\mathrm{LTL}+\mathrm{a} \mathbf{U}$ operator that counts. $\mathbf{U} \leq \bigcirc$: counts \neg until

LTL \leq [Kuperberg and Boom, 2012]

$\mathrm{LTL} \leq=\mathrm{LTL}+\mathrm{a} \mathbf{U}$ operator that counts. $\mathbf{U} \leq \bigcirc$: counts \neg until

LTL \leq [Kuperberg and Boom, 2012]

$\mathrm{LTL} \leq=\mathrm{LTL}+\mathrm{a} \mathbf{U}$ operator that counts. $\mathbf{U} \leq \bigcirc$: counts \neg until

LTL \leq [Kuperberg and Boom, 2012]

$\mathrm{LTL} \leq=\mathrm{LTL}+\mathrm{a} \mathbf{U}$ operator that counts. $\mathbf{U} \leq \bigcirc$: counts \neg until

$\mathrm{LTL} \leq=\mathrm{LTL}+\mathrm{a} \mathbf{U}$ operator that counts. $\mathbf{U} \leq \bigcirc$: counts \neg until

- find a n that dominates $\#$ of \neg
$\mathrm{LTL} \leq=\mathrm{LTL}+\mathrm{a} \mathbf{U}$ operator that counts. $\mathbf{U} \leq \bigcirc$: counts \neg until

- find a n that dominates $\#$ of \neg
- \{possible $n\} \uparrow$-closed
$\mathrm{LTL} \leq=\mathrm{LTL}+\mathrm{a} \mathbf{U}$ operator that counts. $\mathbf{U} \leq \bigcirc$: counts \neg until

- find a n that dominates $\#$ of \neg
- \{possible $n\} \uparrow$-closed
- same n for all occurrences of $\mathbf{U} \leq$ in the formula
$\mathrm{LTL} \leq=\mathrm{LTL}+\mathrm{a} \mathbf{U}$ operator that counts.
$\bigcirc \mathbf{U} \leq$: counts \neg until

- find a n that dominates $\#$ of \neg
- \{possible $n\} \uparrow$-closed
- same n for all occurrences of $\mathbf{U} \leq$ in the formula
- $\llbracket \phi \rrbracket_{\leq}=\inf \{$ possible $n\}$
$L^{\prime} L^{>}=L T L+a \mathbf{R}$ operator that counts. $\mathbf{R}^{>}$: counts \bigcirc while
$L^{\prime} L^{>}=L T L+a \mathbf{R}$ operator that counts. $\mathbf{R}^{>}$: counts \bigcirc while

$L^{\prime} L^{>}=L T L+a \mathbf{R}$ operator that counts. $\mathbf{R}^{>}$: counts \bigcirc while

LTL ${ }^{>}$[Kuperberg and Boom, 2012]
$L^{\prime} L^{>}=L T L+a \mathbf{R}$ operator that counts.
$\mathbf{R}^{>}$: counts \bigcirc while

$L^{\prime} L^{>}=L T L+a \mathbf{R}$ operator that counts.
$\mathbf{R}^{>}$: counts \bigcirc while

- find a n dominated by $\#$ of
$L^{\prime} L^{>}=L T L+a \mathbf{R}$ operator that counts.
$\mathbf{R}^{>}$: counts \bigcirc while

- find a n dominated by $\#$ of
- \{possible $n\} \downarrow$-closed

LTL> [Kuperberg and Boom, 2012]
$\mathrm{LTL}^{>}=\mathrm{LTL}+\mathrm{a} \mathbf{R}$ operator that counts.
$\mathbf{R}^{>}$: counts \bigcirc while

- find a n dominated by $\#$ of \bigcirc
- \{possible $n\} \downarrow$-closed
- same n for all occurrences of $\mathbf{R}^{>}$in the formula

LTL> [Kuperberg and Boom, 2012]
$\mathrm{LTL}^{>}=\mathrm{LTL}+\mathrm{a} \mathbf{R}$ operator that counts.
$\mathbf{R}^{>}$: counts \bigcirc while

- find a n dominated by $\#$ of \bigcirc
- \{possible $n\} \downarrow$-closed
- same n for all occurrences of $\mathbf{R}^{>}$in the formula
- $\llbracket \phi \rrbracket_{>}=\sup \{$ possible $n\}$

Example

$\mathbf{G}(\bigcirc \Longrightarrow(\perp \mathbf{U} \leq \bigcirc)$

counts the minimal distance between any \bigcirc and the next

Example

$\mathbf{G}(\bigcirc \Longrightarrow(\perp \mathbf{U} \leq \bigcirc)$

 counts the minimal distance between any and the next
$(u, n) \models \phi$ iff n dominates every $\mathbf{U} \leq$

- here $(u, n) \models \phi$ iff $n \geq 2$
$\llbracket \phi \rrbracket \leq(u)=\inf \{$ possible $n\}=2$

Negation and Duality

in LTL \leq and LTL> , cost operators cannot be negated

Remark

$$
(u, n) \models a \mathbf{U} \leq b \quad \Longleftrightarrow \quad(u, n) \not \models \neg a \mathbf{R}^{>} \neg b
$$

Duality through negation

$$
\mathrm{LTL}^{\leq} \underset{\neg}{\rightleftharpoons} \mathrm{LTL}^{>}
$$

and push negations to leaves (Negative Normal Form)

Negation and Semantics

$$
\begin{aligned}
& (u, n) \models \phi \quad \Longleftrightarrow \quad(u, n) \not \models \neg \phi \\
& \llbracket \phi \rrbracket \leq(u) \\
& (u, n) \not \models \phi \quad=\inf \{n\}
\end{aligned}
$$

$$
\begin{aligned}
& \llbracket \neg \phi \rrbracket>(u) \\
& (u, n) \models \phi \\
& =\sup \{n\}
\end{aligned}
$$

Negation and Semantics

$$
\begin{aligned}
& (u, n) \models \phi \quad \Longleftrightarrow \quad(u, n) \not \models \neg \phi \\
& \llbracket \phi \rrbracket \leq(u) \\
& (u, n) \not \models \phi \quad=\inf \{n\}
\end{aligned}
$$

$$
\begin{aligned}
& \llbracket \neg \phi \rrbracket>(u) \\
& (u, n) \models \phi \\
& =\sup \{n\}
\end{aligned}
$$

- semantically, \neg is ± 1

Syntactically

Semantically ($\phi \in L T L$)

$$
u \vdash \phi \Longleftrightarrow \forall n \in \mathbb{N} .(u, n) \models \phi
$$

$\mathrm{LTL} \leq$	LTL	$\mathrm{LTL}>$
$\llbracket \phi \rrbracket_{\leq}(u)=0$	$u \vdash \phi$	$\llbracket \phi \rrbracket_{>}(u)=+\infty$
$\llbracket \phi \rrbracket_{\leq}(u)=+\infty$	$u \nvdash \phi$	$\llbracket \phi \rrbracket_{>}(u)=0$

LTL \leq and LTL> model-checking

LTL \leq and LTL> more expressive than LTL
New problems arise

- $(u, n) \models \phi$? for a given $n \in \mathbb{N}$
- $\exists u$
- $\forall u$

LTL \leq and LTL> model-checking

LTL \leq and LTL> more expressive than LTL
New problems arise

- $(u, n) \models \phi$? for a given $n \in \mathbb{N}$
- $\exists u$
- $\forall u$
- is $\llbracket \phi \rrbracket \leq$ bounded over a given language L ?
- decidable when L regular [Bojánczyk and Colcombet, 2006]

LTL \leq and LTL> model-checking

LTL \leq and LTL> more expressive than LTL
New problems arise

- $(u, n) \models \phi$? for a given $n \in \mathbb{N}$
- $\exists u$
- $\forall u$
- is $\llbracket \phi \rrbracket \leq$ bounded over a given language L ?
- decidable when L regular [Bojańczyk and Colcombet, 2006]
- actual values of bounds over a given set L
- $\sup _{L} \llbracket \phi \rrbracket_{\leq}(L T L>$ seems appropriate)
- $\inf _{L} \llbracket \phi \rrbracket_{\leq}$(LTL \leqseems appropriate)

Following the Automata Approach: LTL

Following the Automata Approach: LTL>

Cost Register Automata

[Bojańczyk and Colcombet, 2006]
Transition-Based Generalized Büchi Automaton

+ finite set of counters
actions on counter: observe (o), increment (i), reset (r), ε

Cost Register Automata

[Bojańczyk and Colcombet, 2006]
Transition-Based Generalized Büchi Automaton

+ finite set of counters
actions on counter: observe (o), increment (i), reset (r), ε

2 counters

- 1st one counts consecutive a's
- 2nd one counts consecutive b's
$\operatorname{Val}(\rho)=\min \{$ observed values $\}$
$=\min \#$ consecutive occurrences of the same letter

Cost Register Automata Semantics

>-automata

- $\operatorname{Val}_{>}(\rho)=\inf \{$ observed counter values $\}$
- $\llbracket \mathcal{A} \rrbracket_{>}(u)=\sup _{\rho \text { acc. run on } u} \operatorname{Val}_{>}(\rho)$
actions: i, or, r, ε

Cost Register Automata Semantics

>-automata

- $\operatorname{Val}_{>}(\rho)=\inf \{$ observed counter values $\}$
- $\llbracket \mathcal{A} \rrbracket_{>}(u)=\sup _{\rho \text { acc. run on } u} \operatorname{Val}_{>}(\rho)$
actions: i, or, r, ε
\leq-automata
- $\operatorname{Val}_{\leq}(\rho)=\sup \{$ observed counter values $\}$
- $\llbracket \mathcal{A} \rrbracket \leq(u)=\inf _{\rho}$ acc. run on $u \operatorname{Val}_{\leq}(\rho)$
actions: io, r, ε

From LTL> to >-automata

Translation idea [Kuperberg, 2012]

- similar to LTL \rightarrow Büchi translation
- accepting conditions on the transitions
- one counter for each $\mathbf{R}^{>}$
- counts the occurrences of Ihs of $\mathbf{R}^{>}$, as expected

Automaton for $\phi=\mathbf{G}(a \Longrightarrow \perp \mathbf{U} \leq b)$

$\llbracket \phi \rrbracket_{\leq}(u)=$ max distance between any a and the next b

Automaton for $\phi=\mathbf{G}(a \Longrightarrow \perp \mathbf{U} \leq b)$

$\llbracket \phi \rrbracket \leq(u)=$ max distance between any a and the next b

Automaton for $\phi=\mathbf{G}(a \Longrightarrow \perp \mathbf{U} \leq b)$

$\llbracket \phi \rrbracket \leq(u)=$ max distance between any a and the next b

- non-determinism
- run with largest value wins: useless transitions

Automaton for $\phi=\mathbf{G}(a \Longrightarrow \perp \mathbf{U} \leq b)$

$\llbracket \phi \rrbracket \leq(u)=$ max distance between any a and the next b

- non-determinism
- run with largest value wins: useless transitions
- safe to remove useless transitions

Automaton for $\phi=\mathbf{G}(a \Longrightarrow \perp \mathbf{U} \leq b)$

$\llbracket \phi \rrbracket_{\leq}(u)=$ max distance between any a and the next b

- non-determinism
- run with largest value wins: useless transitions
- safe to remove useless transitions
- guess the a for which the max is reached

Automaton for $\phi=\mathbf{G}(a \Longrightarrow \perp \mathbf{U} \leq b)$

$\llbracket \phi \rrbracket_{\leq}(u)=$ max distance between any a and the next b

- non-determinism
- run with largest value wins: useless transitions
- safe to remove useless transitions
- guess the a for which the max is reached
- guess: or just before b

Automaton for $\phi=\mathbf{G}(a \Longrightarrow \perp \mathbf{U} \leq b)$

$\llbracket \phi \rrbracket \leq(u)=$ max distance between any a and the next b

- non-determinism
- run with largest value wins: useless transitions
- safe to remove useless transitions
- guess the a for which the max is reached
- guess: or just before b
- wrong guesses yield runs with smaller values, eliminated by sup in $\llbracket \mathcal{A} \rrbracket_{>}$

Compute the Upper Bound of a $>$-Automata

Several sub-problems.

Boundedness

Is sup $\llbracket \mathcal{A} \rrbracket_{>}$finite?
Exact value
If finite, value of $\sup \llbracket \mathcal{A} \rrbracket_{>}$?

Boundedness [Colcombet, 2009]

Property

$\sup \llbracket \mathcal{A} \rrbracket_{>}=\infty$ iff $\exists \rho$ acc. run s.t.
every or ${ }_{\gamma}$ is preceded by a cycle that increments γ and never or it (γ-cycle).

Boundedness [Colcombet, 2009]

Property

$\sup \llbracket \mathcal{A} \rrbracket_{>}=\infty$ iff $\exists \rho$ acc. run s.t.
every or ${ }_{\gamma}$ is preceded by a cycle that increments γ and never or it (γ-cycle).

Boundedness [Colcombet, 2009]

Property

$\sup \llbracket \mathcal{A} \rrbracket_{>}=\infty$ iff $\exists \rho$ acc. run s.t.
every or ${ }_{\gamma}$ is preceded by a cycle that increments γ and never or it (γ-cycle).

Boundedness [Colcombet, 2009]

Property

$\sup [\mathcal{A}]_{>}=\infty$ iff $\exists \rho$ acc. run s.t.
every or ${ }_{\gamma}$ is preceded by a cycle that increments γ and never or it (γ-cycle).

Upper bound

if bounded, $\sup \llbracket \mathcal{A} \rrbracket>\leq\left|Q_{\mathcal{A}}\right|$

Back to LTL

Büchi Emptiness Check

$u \in L(\mathcal{A})$ iff \exists acc. run on u possible early answer

Bound Computation

$\sup \llbracket A \rrbracket_{>}=\sup _{\text {all acc. runs }} \rho \operatorname{Val}_{>}(\rho)$ no early break is possible but once a candidate n is found, all values $<n$ are ruled out

Back to LTL

Büchi Emptiness Check

$u \in L(\mathcal{A})$ iff \exists acc. run on u possible early answer

Bound Computation

$\sup \llbracket A \rrbracket_{>}=\sup _{\text {all acc. runs }} \rho \operatorname{Val}_{>}(\rho)$ no early break is possible but once a candidate n is found, all values $<n$ are ruled out Problem: remove runs of value $<n$ in \mathcal{A}

Back to LTL

Problem
INPUT: $\quad \phi \in \mathrm{LTL}^{>}, n \in \mathbb{N}$
OUTPUT: $\quad \phi[n] \in$ LTL s.t. $u \vdash \phi[n] \Longleftrightarrow \llbracket \phi \rrbracket_{>}(u) \geq n$
n is "hardcoded" in $\phi[n]$

Back to LTL

Problem

INPUT: $\quad \phi \in \operatorname{LTL}^{>}, n \in \mathbb{N}$

OUTPUT: $\phi[n] \in \operatorname{LTL}$ s.t. $u \vdash \phi[n] \Longleftrightarrow \llbracket \phi \rrbracket_{>}(u) \geq n$

- for $\phi, \psi \in \operatorname{LTL}$
- $\left(\phi \mathbf{R}^{>} \psi\right)[0] \equiv \phi \mathbf{R} \psi$
- $\left(\phi \mathbf{R}^{>} \psi\right)[n] \equiv\left(\phi \wedge \mathbf{X}\left(\phi \mathbf{R}^{>} \psi\right)[n-1]\right) \mathbf{R} \psi$
- otherwise $(\phi \bowtie \psi)[n]=\phi[n] \bowtie \psi[n]$
n is "hardcoded" in $\phi[n]$

Back to LTL

Problem

INPUT: $\quad \phi \in \mathrm{LTL}^{>}, n \in \mathbb{N}$

OUTPUT: $\quad \phi[n] \in$ LTL s.t. $u \vdash \phi[n] \Longleftrightarrow \llbracket \phi \rrbracket_{>}(u) \geq n$

- for $\phi, \psi \in \operatorname{LTL}$
- $\left(\phi \mathbf{R}^{>} \psi\right)[0] \equiv \phi \mathbf{R} \psi$
- $\left(\phi \mathbf{R}^{>} \psi\right)[n] \equiv\left(\phi \wedge \mathbf{X}\left(\phi \mathbf{R}^{>} \psi\right)[n-1]\right) \mathbf{R} \psi$
- otherwise $(\phi \bowtie \psi)[n]=\phi[n] \bowtie \psi[n]$
$\phi=a \mathbf{R}^{>} b, n=1$
$(a \wedge \mathbf{X}(a \mathbf{R} b)) \mathbf{R} b$
n is "hardcoded" in $\phi[n]$

LTL to remove runs

Recall
$\llbracket \phi_{1} \wedge \phi_{2} \rrbracket_{>}=\sup \left\{n\right.$ possible for ϕ_{1} AND $\left.\phi_{2}\right\}=\min \left(\llbracket \phi_{1} \rrbracket_{>}, \llbracket \phi_{2} \rrbracket_{>}\right)$

LTL to remove runs

Recall
$\llbracket \phi_{1} \wedge \phi_{2} \rrbracket_{>}=\sup \left\{n\right.$ possible for ϕ_{1} AND $\left.\phi_{2}\right\}=\min \left(\llbracket \phi_{1} \rrbracket_{>}, \llbracket \phi_{2} \rrbracket_{>}\right)$
$u \vdash \phi[n] \Longleftrightarrow \llbracket \phi \rrbracket_{>}(u) \geq n$
$\llbracket \phi[n] \rrbracket_{>}(u)= \begin{cases}+\infty & \text { if } \llbracket \phi \rrbracket_{>}(u) \geq n \\ 0 & \text { otherwise }\end{cases}$

LTL to remove runs

Recall

$\llbracket \phi_{1} \wedge \phi_{2} \rrbracket_{>}=\sup \left\{n\right.$ possible for ϕ_{1} AND $\left.\phi_{2}\right\}=\min \left(\llbracket \phi_{1} \rrbracket_{>}, \llbracket \phi_{2} \rrbracket_{>}\right)$
$u \vdash \phi[n] \Longleftrightarrow \llbracket \phi \rrbracket_{>}(u) \geq n$
$\llbracket \phi[n] \rrbracket_{>}(u)= \begin{cases}+\infty & \text { if } \llbracket \phi \rrbracket_{>}(u) \geq n \\ 0 & \text { otherwise }\end{cases}$
$\llbracket \phi \wedge \phi[n] \rrbracket_{>}(u)= \begin{cases}\llbracket \phi \rrbracket_{>}(u) & \text { if } \llbracket \phi \rrbracket_{>}(u) \geq n \\ 0 & \text { otherwise }\end{cases}$
$\phi[n]$ refines ϕ by forbidding words of value $<n$

LTL to remove runs

Recall

$\llbracket \phi_{1} \wedge \phi_{2} \rrbracket_{>}=\sup \left\{n\right.$ possible for ϕ_{1} AND $\left.\phi_{2}\right\}=\min \left(\llbracket \phi_{1} \rrbracket_{>}, \llbracket \phi_{2} \rrbracket_{>}\right)$
$u \vdash \phi[n] \Longleftrightarrow \llbracket \phi \rrbracket_{>}(u) \geq n$
$\llbracket \phi[n] \rrbracket_{>}(u)= \begin{cases}+\infty & \text { if } \llbracket \phi \rrbracket_{>}(u) \geq n \\ 0 & \text { otherwise }\end{cases}$
$\llbracket \phi \wedge \phi[n] \rrbracket_{>}(u)= \begin{cases}\llbracket \phi \rrbracket_{>}(u) & \text { if } \llbracket \phi \rrbracket_{>}(u) \geq n \\ 0 & \text { otherwise }\end{cases}$
$\phi[n]$ refines ϕ by forbidding words of value $<n$
If $n \leq \sup \llbracket \phi \rrbracket_{>}$then $\sup \llbracket \phi \wedge \phi[n] \rrbracket_{>}=\sup \llbracket \phi \rrbracket_{>}$

Refinement loop for upper bound

Repeat until \mathcal{A}_{ϕ} has no more accepting runs
Find an acc. run ρ in \mathcal{A}_{ϕ}
Let $n=\operatorname{Val}_{>}(\rho)$
Then $n \leq \sup \llbracket \mathcal{A} \rrbracket>$
Update $\phi \leftarrow \phi \wedge \phi[n]$ and restart

Refinement loop for upper bound

Repeat until \mathcal{A}_{ϕ} has no more accepting runs
Find an acc. run ρ in \mathcal{A}_{ϕ}
Let $n=\operatorname{Val}_{>}(\rho)$
Then $n \leq \sup \llbracket \mathcal{A} \rrbracket>$
Update $\phi \leftarrow \phi \wedge \phi[n]$ and restart
Requires $\sup \llbracket A_{\phi_{0}} \rrbracket><\infty$
$\sup \llbracket A_{\phi_{0}} \rrbracket>=\sup _{\rho \text { acc. }}$ run $\operatorname{Val}_{>}(\rho)$
Guarantees that every found ρ has a finite value

Refinement loop for upper bound

Repeat until \mathcal{A}_{ϕ} has no more accepting runs
Find an acc. run ρ in \mathcal{A}_{ϕ}
Let $n=\operatorname{Val}_{>}(\rho)$
Then $n \leq \sup \llbracket \mathcal{A} \rrbracket>$
Update $\phi \leftarrow \phi \wedge \phi[n]$ and restart
Requires $\left.\sup \llbracket A_{\phi_{0}}\right]_{>}<\infty$
$\sup \llbracket A_{\phi_{0}} \rrbracket_{>}=\sup _{\rho \text { acc. }}$ run $\operatorname{Val}_{>}(\rho)$
Guarantees that every found ρ has a finite value

- easy to implement: formulae manipulations + Büchi EC
- refinement: less and less behaviors

Loop for boundedness + exact value

INPUT: ϕ_{0} and \mathcal{M}

$$
\begin{aligned}
& B \leftarrow\left|\mathcal{A}_{\phi_{0}}\right| \times|\mathcal{M}| \\
& / / \text { if finite }, \sup \llbracket \mathcal{A}_{\phi_{0}} \rrbracket_{>} \leq\left|\mathcal{A}_{\phi_{0}} \times \mathcal{M}\right| \leq B \\
& \phi \leftarrow \phi_{0} \\
& n \leftarrow 0
\end{aligned}
$$

while $\left(\mathcal{L}\left(\mathcal{A}_{\phi} \times \mathcal{M}\right) \neq \emptyset\right)$ \{
$\rho \leftarrow$ an accepting run in $\mathcal{A}_{\phi} \times \mathcal{M}$
$n \leftarrow \operatorname{Val}_{>}(\rho)$
if $\quad(n>B)$
return unbounded
else
$\phi \leftarrow \phi_{0} \wedge \phi_{0}[n]$
\}
return n

Our tool Spaction

Conclusion

CLTL $=$ nice extension of LTL

- expressivity
- counter automata $=$ nice extension of ω-automata
- separate the logics from the model
- algorithm for bound computation
- relies on ω-automata emptiness check
- working tool (in progress)

What's next?

- examples and use cases
- more abstractions and refinements
- boundedness: smaller automata, fewer counters
- exact value: smaller synchronized products
- relaxed versions: $\sup \llbracket \mathcal{A}_{1} \rrbracket_{>} \leq n * \sup \llbracket \mathcal{A}_{2} \rrbracket_{>}$
- variants and generalization

Bibliography

Bojańczyk, M. and Colcombet, T. (2006).
Bounds in ω-regularity.
In Logic in Computer Science, 2006 21st Annual IEEE Symposium on, pages 285-296. IEEE.
Colcombet, T. (2009).
The theory of stabilisation monoids and regular cost functions.
In Automata, languages and programming, pages 139-150. Springer.
Kuperberg, D. (2012).
Étude de classes de fonctions de coût régulières.
PhD thesis, Université Paris Diderot.
Kuperberg, D. and Boom, M. V. (2012).
On the expressive power of cost logics over infinite words.
In Automata, Languages, and Programming, pages 287-298. Springer.
LRDE (2005-2015).
SPOT home page.
http://spot.lip6.fr/.

