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Thinking “distributed” is hard

= Not natural
= Multitude of abstractions and models

= (Almost) no categorization/complexity classes

A theory of distributed computational
complexity?






This talk

« Motivate and propose wait-free task solutions
with external failure detection (EFD)

« Propose a complete hierarchy for tasks based
on the weakest EFD



Solving a task: correctness
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Distributed tasks (1,0,A)

. | —set of input vectors
- O —set of output vectors
. Task specification A: |-20°

k-set agreement:

.+ Processes start with inputs in V (| V|>k)

- The set of outputs is a subset of inputs of size at most k
- k=1: consensus

. Colorless: allows for adopting inputs or outputs



Solving a task: progress

- Every process outputs % - Q%
v Unrealistic for systems with ]
failures or very long delays L,

= Every process taking enough steps
outputs (wait-freedom)

v Individual progress is a liveness
property: a slow process may
wake up and make progress later

v No notion of failures



Unfortunately...

Most important tasks are not solvable in fault-
prone asynchronous systems

v'Consensus, set agreement, renaming, symmetry
breaking

Solvable in synchronous systems



Modeling synchrony

« Explicit bounds on communication and
relative processing speed [DDS86]
v'Too coarse-grained

» Failure detectors [CHT96]

v'An oracle providing hints on failure pattern: on
where and when failures occurred

v'Formally: FD D is a map from failure pattern to a
set of failure detector histories



Failure detectors: examples

» Perfect P [CT96]

Outputs a set of suspected processes
v" No process is suspected before it fails

v Eventually, all faulty processes are always
suspected

» Eventual leader Q) [CHT96]

Outputs a single leader process

v Eventually, the same correct process is always a
leader
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Weakest failure detectors

D is the weakest failure detector for a task T if
« Sufficient: D solves T
« Necessary: weaker that any D’ that solves T

« consensus: Q) (the leader FD) [CHT96]

» set agreement: anti-() [Zie07]
= k-set agreement: anti-Q, [GK09]
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Private failure detection

Bob is not coming back Bob is still here
\ /
ouT L
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2

Bob’s FD module is private! OFFIC

—
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Progress with failure detectors

Assuming that every correct process takes
enough steps...

= every correct process outputs
v'Individual progress depends on other processes

But can we solve a “hard” task wait-free?

External oracle: wait-freedom with advice
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External oracles
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External oracle
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External failure detection
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Walit-freedom with advice

Assuming that every correct synchronization process
takes enough steps

= Each computation process taking enough steps
outputs

v'Wait-freedom for C-processes

__________________________________________________________________________________________
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EFD vs. FD

« Conventional (FD) model is a special case of EFD

« |In EFD, the weakest failure detector for T is at least
as strong as in FD
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Special case: colorless tasks

= EFD and FD are equivalent w.r.t.
colorless tasks:

v'D solves a colorless T iff it solves T in
EFD

v'"Weakest FDs for T are the same in
the two models

What about generic (colored) tasks?




A task characterization: k-concurrency

= Every task T is characterized by its
concurrency level:

v'The largest k such that T can be solved
K-concurrently

v'k=1 (every task is solvable 1-concurrently)

v'n-concurrent solvability = wait-freedom
v'k-set agreement has concurrency level k
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A task characterization

= k-concurrency can be simulated with anti-C),

v'A k-concurrently solvable task is solvable with
anti-Q, (in EFD) [GG11,this paper]

« Each task is equivalent to some form of set
agreement:

v'The WFD for every task of concurrency level Kk is
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A hierarchy of n-process tasks

concurrency
level
1 [ Consensus ] <
k [ k-set agreement } <
n-1 [ (n-1)-set agreement } <
n [ n-set agreement } <

universal tasks - Q

The easiest k-concurrent
tasks anti-Q,

The easiest unsolvable
tasks - anti-Q

Trivial tasks - no FD needed
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Implication: renaming

= (J,m)-renaming: | participants coming out with
namesin{1,...,m}
v'In the conventional FD model, the problem is a FD

= (J,J+k-1)-renaming: k-concurrently solvable

v'A variation of wait-free solution of (j,2j-1)-
renaming [Attyia et al,1990]

v'Concurrency lower bound is k
v What about (k+1)-concurrency?
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Strong renaming (k=1)

(J,])-renaming:
« Strong j-renaming has concurrency level 1
v'By reduction to 2-process consensus [EBGO09]

= The WFD for strong j-renaming is )

1 [ Consensus, strong j-renaming } < universal tasks - Q
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Weak j-renaming (k=j-1)

(j,2]-2)-renaming:
« When | is prime power: concurrency level |-1

v'(j,2j-2)-renaming impossible wait-free (j-concurrently) [CR,
2010]

v'The WFD for (j,2j-1)-renaming is anti-Q, ,

The easiest (j-1)-concurrent

-1 [ (j-1)-set agreement, weak j-renaming ] tasks: am—,_Qj_l

= When j is not prime power: (j,2]-2)-renaming solvable wait-
free [CR, 2011], and thus with anti-Q;: concurrency level |

v Can we solve (j,2]-3)-renaming with anti-Q,?
v Concurrency level of (j,m)-renaming?
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QOutcomes

= New EFD framework, separating
computation from synchronization
v"New understanding of what does it mean to
solve a task (with a FD)
» Complete characterization of all n-process
tasks, based on their concurrency levels
1,....n

v'Including colored ones, like renaming or
k-set agreement among a subset of k+1
processes
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New avenue for simulations

Asynchronous:

« t-resilience = t+1-process wait-freedom
[BG93,Gaf09]

« Synchronous set agreement time lower bound
[Gaf98,GGPOS5]

= k-concurrency = k-set consensus [GG10]

= Adversaries, disagreement power
[IDFGT10,GK10]

EFD enables simulating protocols with FDs!
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“Problems cannot be solved by the same level
of thinking that created them’

Full version: http://arxiv.org/abs/1109.3056

THANK YOU!
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EFD vs. FD

« Conventional (FD) model is a special case of
EFD

v'Bijection between C-processes and S-processes

v'A C-process fails iff its S-process counterpart
does

» |n EFD, the weakest failure detector is at least
as strong

v'Should let a C-process decide even if its S-
counterpart has failed
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A puzzle

Solving consensus among every pair of processes
(with a FD) is as hard as solving consensus
among all [Delporte et al., JACM 2010]

What about k-set agreement?

In EFD:

If D solves k-set agreement among some set U of k
+1 C-processes, then D solves k-set agreement
among all C-processes

(simple simulation of processes in U)
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