Wait-Freedom with Advice

Petr Kuznetsov
Telecom ParisTech

Joint work with Carole Delporte and Hugues Fauconnier
(U Paris Diderot) and Eli Gafni (UCLA)

ACM PODC 2012

Mefosyloma 2013

Thinking “distributed” is hard

= Not natural
= Multitude of abstractions and models

= (Almost) no categorization/complexity classes

A theory of distributed computational
complexity?

This talk

« Motivate and propose wait-free task solutions
with external failure detection (EFD)

« Propose a complete hierarchy for tasks based
on the weakest EFD

Solving a task: correctness

N

5"

Distributed tasks (1,0,A)

. | —set of input vectors
- O —set of output vectors
. Task specification A: |-20°

k-set agreement:

.+ Processes start with inputs in V (| V|>k)

- The set of outputs is a subset of inputs of size at most k
- k=1: consensus

. Colorless: allows for adopting inputs or outputs

Solving a task: progress

- Every process outputs % - Q%
v Unrealistic for systems with]
failures or very long delays L,

= Every process taking enough steps
outputs (wait-freedom)

v Individual progress is a liveness
property: a slow process may
wake up and make progress later

v No notion of failures

Unfortunately...

Most important tasks are not solvable in fault-
prone asynchronous systems

v'Consensus, set agreement, renaming, symmetry
breaking

Solvable in synchronous systems

Modeling synchrony

« Explicit bounds on communication and
relative processing speed [DDS86]
v'Too coarse-grained

» Failure detectors [CHT96]

v'An oracle providing hints on failure pattern: on
where and when failures occurred

v'Formally: FD D is a map from failure pattern to a
set of failure detector histories

Failure detectors: examples

» Perfect P [CT96]

Outputs a set of suspected processes
v" No process is suspected before it fails

v Eventually, all faulty processes are always
suspected

» Eventual leader Q) [CHT96]

Outputs a single leader process

v Eventually, the same correct process is always a
leader

10

Weakest failure detectors

D is the weakest failure detector for a task T if
« Sufficient: D solves T
« Necessary: weaker that any D’ that solves T

« consensus: Q) (the leader FD) [CHT96]

» set agreement: anti-() [Zie07]
= k-set agreement: anti-Q, [GK09]

11

Private failure detection

Bob is not coming back Bob is still here
\ /
ouT L
OF
2

Bob’s FD module is private! OFFIC

—

12

Progress with failure detectors

Assuming that every correct process takes
enough steps...

= every correct process outputs
v'Individual progress depends on other processes

But can we solve a “hard” task wait-free?

External oracle: wait-freedom with advice

13

External oracles

PR
%\Q/“%

External oracle

14

External failure detection

L)

%({:T C-processes
‘ - OFFICK g (computation)
«

—) !

3
| OUT /7 %2 S-processes

OF
()Fﬁ(A g (synchronization)
| O

15

Walit-freedom with advice

Assuming that every correct synchronization process
takes enough steps

= Each computation process taking enough steps
outputs

v'Wait-freedom for C-processes

__

16

EFD vs. FD

« Conventional (FD) model is a special case of EFD

« |In EFD, the weakest failure detector for T is at least
as strong as in FD

YT

/

Sp L gk
\ ouT /’

\—-,/

/l_
\ - - }’

e
>N

ﬂ

17

17

Special case: colorless tasks

= EFD and FD are equivalent w.r.t.
colorless tasks:

v'D solves a colorless T iff it solves T in
EFD

v'"Weakest FDs for T are the same in
the two models

What about generic (colored) tasks?

A task characterization: k-concurrency

= Every task T is characterized by its
concurrency level:

v'The largest k such that T can be solved
K-concurrently

v'k=1 (every task is solvable 1-concurrently)

v'n-concurrent solvability = wait-freedom
v'k-set agreement has concurrency level k

19

A task characterization

= k-concurrency can be simulated with anti-C),

v'A k-concurrently solvable task is solvable with
anti-Q, (in EFD) [GG11,this paper]

« Each task is equivalent to some form of set
agreement:

v'The WFD for every task of concurrency level Kk is

20

A hierarchy of n-process tasks

concurrency
level
1 [Consensus] <
k [k-set agreement } <
n-1 [(n-1)-set agreement } <
n [n-set agreement } <

universal tasks - Q

The easiest k-concurrent
tasks anti-Q,

The easiest unsolvable
tasks - anti-Q

Trivial tasks - no FD needed

21

Implication: renaming

= (J,m)-renaming: | participants coming out with
namesin{1,...,m}
v'In the conventional FD model, the problem is a FD

= (J,J+k-1)-renaming: k-concurrently solvable

v'A variation of wait-free solution of (j,2j-1)-
renaming [Attyia et al,1990]

v'Concurrency lower bound is k
v What about (k+1)-concurrency?

22

Strong renaming (k=1)

(J,])-renaming:
« Strong j-renaming has concurrency level 1
v'By reduction to 2-process consensus [EBGO09]

= The WFD for strong j-renaming is)

1 [Consensus, strong j-renaming } < universal tasks - Q

23

Weak j-renaming (k=j-1)

(j,2]-2)-renaming:
« When | is prime power: concurrency level |-1

v'(j,2j-2)-renaming impossible wait-free (j-concurrently) [CR,
2010]

v'The WFD for (j,2j-1)-renaming is anti-Q, ,

The easiest (j-1)-concurrent

-1 [(j-1)-set agreement, weak j-renaming] tasks: am—,_Qj_l

= When j is not prime power: (j,2]-2)-renaming solvable wait-
free [CR, 2011], and thus with anti-Q;: concurrency level |

v Can we solve (j,2]-3)-renaming with anti-Q,?
v Concurrency level of (j,m)-renaming?

24

QOutcomes

= New EFD framework, separating
computation from synchronization
v"New understanding of what does it mean to
solve a task (with a FD)
» Complete characterization of all n-process
tasks, based on their concurrency levels
1,....n

v'Including colored ones, like renaming or
k-set agreement among a subset of k+1
processes

25

New avenue for simulations

Asynchronous:

« t-resilience = t+1-process wait-freedom
[BG93,Gaf09]

« Synchronous set agreement time lower bound
[Gaf98,GGPOS5]

= k-concurrency = k-set consensus [GG10]

= Adversaries, disagreement power
[IDFGT10,GK10]

EFD enables simulating protocols with FDs!

26

“Problems cannot be solved by the same level
of thinking that created them’

Full version: http://arxiv.org/abs/1109.3056

THANK YOU!

27

EFD vs. FD

« Conventional (FD) model is a special case of
EFD

v'Bijection between C-processes and S-processes

v'A C-process fails iff its S-process counterpart
does

» |n EFD, the weakest failure detector is at least
as strong

v'Should let a C-process decide even if its S-
counterpart has failed

28

A puzzle

Solving consensus among every pair of processes
(with a FD) is as hard as solving consensus
among all [Delporte et al., JACM 2010]

What about k-set agreement?

In EFD:

If D solves k-set agreement among some set U of k
+1 C-processes, then D solves k-set agreement
among all C-processes

(simple simulation of processes in U)

29

