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Thinking “distributed” is hard

  Not natural
  Multitude of abstractions and models 
  (Almost) no categorization/complexity classes

A theory of distributed computational 
complexity?
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This talk 

  Motivate and propose wait-free task solutions 
with external failure detection (EFD)

  Propose a complete hierarchy for tasks based 
on the weakest EFD
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Solving a task: correctness
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Distributed tasks (I,O,Δ)

•  I – set of input vectors 
•  O – set of output vectors 

•  Task specificaPon Δ: I→2O 

k‐set agreement: 

•  Processes start with inputs in V (|V|>k) 
•  The set of outputs is a subset of inputs of size at most k 
•  k=1: consensus 

•  Colorless: allows for adopPng inputs or outputs 
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Solving a task: progress
  Every process outputs

 Unrealistic for systems with 
failures or very long delays

  Every process taking enough steps 
outputs (wait-freedom)
  Individual progress is a liveness 

property: a slow process may 
wake up and make progress later

  No notion of failures
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Unfortunately…

Most important tasks are not solvable in fault-
prone asynchronous systems
 Consensus, set agreement, renaming, symmetry 

breaking

Solvable in synchronous systems
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Modeling synchrony 

  Explicit bounds on communication and 
relative processing speed [DDS86]
 Too coarse-grained

  Failure detectors [CHT96]
 An oracle providing hints on failure pattern: on 

where and when failures occurred
 Formally: FD D is a map from failure pattern to a 

set of failure detector histories
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Failure detectors: examples
  Perfect  P [CT96]
Outputs a set of suspected processes
  No process is suspected before it fails
  Eventually, all faulty processes are always 

suspected

  Eventual leader Ω [CHT96]
Outputs a single leader process
  Eventually, the same correct process is always a 

leader
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Weakest failure detectors
D is the weakest failure detector for a task T if 
  Sufficient: D solves T
  Necessary: weaker that any Dʼ that solves T

  consensus: Ω (the leader FD) [CHT96]

  set agreement: anti-Ω [Zie07]
  k-set agreement: anti-Ωk [GK09]
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Private failure detection

Bob is not coming back! Bob is still here!

Bobʼs FD module is private!
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Progress with failure detectors
Assuming that every correct process takes 

enough steps…
  every correct process outputs

 Individual progress depends on other processes

But can we solve a “hard” task wait-free?

External oracle: wait-freedom with advice
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External oracles

External oracle 
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External failure detection

C-processes
(computation)

S-processes
(synchronization)
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Wait-freedom with advice
Assuming that every correct synchronization process 

takes enough steps
  Each computation process taking enough steps 

outputs 
 Wait-freedom for C-processes

… 
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EFD vs. FD
  Conventional (FD) model is a special case of EFD
  In EFD, the weakest failure detector for T  is at least 

as strong as in FD



18 

Special case: colorless tasks

  EFD and FD are equivalent w.r.t. 
colorless tasks:
 D solves a colorless T iff it solves T in 

EFD
 Weakest FDs for T are the same in 

the two models

What about generic (colored) tasks? 
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A task characterization: k-concurrency
  Every task T is characterized by its 

concurrency level:
 The largest k such that T can be solved              

k-concurrently

 k≥1 (every task is solvable 1-concurrently)
 n-concurrent solvability =  wait-freedom
 k-set agreement has concurrency level k
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A task characterization

  k-concurrency can be simulated with anti-Ωk
 A k-concurrently solvable task is solvable with 

anti-Ωk (in EFD) [GG11,this paper]

  Each task is equivalent to some form of set 
agreement:
 The WFD for every task of concurrency level k is 

anti-Ωk
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A hierarchy of n-process tasks 
 concurrency 

level

 n‐set agreement 

(n‐1)‐set agreement 

Consensus 

. . . 

Trivial tasks ‐ no FD needed 

universal tasks ‐ Ω 

n 

n‐1 

1 

The easiest unsolvable 
tasks ‐ anP‐Ω 

k‐set agreement  k 

. . . 

The easiest k‐concurrent 
tasks anP‐Ωk  
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Implication: renaming
  (j,m)-renaming: j participants coming out with 

names in {1,…,m}
 In the conventional FD model, the problem is a FD

  (j,j+k-1)-renaming: k-concurrently solvable 
 A variation of wait-free solution of (j,2j-1)-

renaming [Attyia et al,1990]
 Concurrency lower bound is k
  What about (k+1)-concurrency?
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Strong renaming (k=1) 
(j,j)-renaming:
  Strong j-renaming has concurrency level 1

 By reduction to 2-process consensus [EBG09]
   The WFD for strong j-renaming is Ω

Consensus, strong j‐renaming  universal tasks ‐ Ω 1 
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Weak j-renaming (k=j-1)
(j,2j-2)-renaming: 
  When j is prime power: concurrency level j-1

 (j,2j-2)-renaming impossible wait-free (j-concurrently) [CR, 
2010] 

 The WFD for (j,2j-1)-renaming is anti-Ωj-1

(j‐1)‐set agreement, weak j‐renaming j‐1 
The easiest (j‐1)‐concurrent 

tasks: anP‐Ωj‐1 

  When j is not prime power: (j,2j-2)-renaming solvable wait-
free [CR, 2011], and thus with anti-Ωj: concurrency level j
  Can we solve (j,2j-3)-renaming with anti-Ωj?
  Concurrency level of (j,m)-renaming?
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Outcomes
  New EFD framework, separating 

computation from synchronization 
 New understanding of what does it mean to 

solve a task (with a FD)
  Complete characterization of all n-process 

tasks, based on their concurrency levels   
1,…,n
 Including colored ones, like renaming or          

k-set agreement among a subset of k+1 
processes
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New avenue for simulations
Asynchronous:
  t-resilience ≅ t+1-process wait-freedom 

[BG93,Gaf09]
  Synchronous set agreement time lower bound 

[Gaf98,GGP05]
  k-concurrency ≅ k-set consensus [GG10]
  Adversaries, disagreement power 

[DFGT10,GK10]

EFD enables simulating protocols with FDs! 
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“Problems cannot be solved by the same level 
of thinking that created them”

Full version: http://arxiv.org/abs/1109.3056

THANK YOU!
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EFD vs. FD
  Conventional (FD) model is a special case of 

EFD
 Bijection between C-processes and S-processes
 A C-process fails iff its S-process counterpart 

does

  In EFD, the weakest failure detector is at least 
as strong
 Should let a C-process decide even if its S-

counterpart has failed
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A puzzle
Solving consensus among every pair of processes 

(with a FD) is as hard as solving consensus 
among all [Delporte et al., JACM 2010]

What about k-set agreement? 

In EFD:
If D solves k-set agreement among some set U of k

+1  C-processes, then D solves k-set agreement 
among all C-processes

(simple simulation of processes in U)


