
Wait-Freedom with Advice
 Petr Kuznetsov

Telecom ParisTech

Joint work with Carole Delporte and Hugues Fauconnier

(U Paris Diderot) and Eli Gafni (UCLA)

ACM PODC 2012

Mefosyloma 2013

2

Thinking “distributed” is hard

  Not natural
  Multitude of abstractions and models
  (Almost) no categorization/complexity classes

A theory of distributed computational
complexity?

3

4

This talk

  Motivate and propose wait-free task solutions
with external failure detection (EFD)

  Propose a complete hierarchy for tasks based
on the weakest EFD

5

Solving a task: correctness

6

Distributed tasks (I,O,Δ)

•  I – set of input vectors
•  O – set of output vectors

•  Task specificaPon Δ: I→2O 

k‐set agreement:

•  Processes start with inputs in V (|V|>k)
•  The set of outputs is a subset of inputs of size at most k
•  k=1: consensus

•  Colorless: allows for adopPng inputs or outputs

7

Solving a task: progress
  Every process outputs

 Unrealistic for systems with
failures or very long delays

  Every process taking enough steps
outputs (wait-freedom)
  Individual progress is a liveness

property: a slow process may
wake up and make progress later

  No notion of failures

8

Unfortunately…

Most important tasks are not solvable in fault-
prone asynchronous systems
 Consensus, set agreement, renaming, symmetry

breaking

Solvable in synchronous systems

9

Modeling synchrony

  Explicit bounds on communication and
relative processing speed [DDS86]
 Too coarse-grained

  Failure detectors [CHT96]
 An oracle providing hints on failure pattern: on

where and when failures occurred
 Formally: FD D is a map from failure pattern to a

set of failure detector histories

10

Failure detectors: examples
  Perfect P [CT96]
Outputs a set of suspected processes
  No process is suspected before it fails
  Eventually, all faulty processes are always

suspected

  Eventual leader Ω [CHT96]
Outputs a single leader process
  Eventually, the same correct process is always a

leader

11

Weakest failure detectors
D is the weakest failure detector for a task T if
  Sufficient: D solves T
  Necessary: weaker that any Dʼ that solves T

  consensus: Ω (the leader FD) [CHT96]

  set agreement: anti-Ω [Zie07]
  k-set agreement: anti-Ωk [GK09]

12

Private failure detection

Bob is not coming back! Bob is still here!

Bobʼs FD module is private!

13

Progress with failure detectors
Assuming that every correct process takes

enough steps…
  every correct process outputs

 Individual progress depends on other processes

But can we solve a “hard” task wait-free?

External oracle: wait-freedom with advice

14

External oracles

External oracle

15

External failure detection

C-processes
(computation)

S-processes
(synchronization)

16

Wait-freedom with advice
Assuming that every correct synchronization process

takes enough steps
  Each computation process taking enough steps

outputs
 Wait-freedom for C-processes

…

17

EFD vs. FD
  Conventional (FD) model is a special case of EFD
  In EFD, the weakest failure detector for T is at least

as strong as in FD

18

Special case: colorless tasks

  EFD and FD are equivalent w.r.t.
colorless tasks:
 D solves a colorless T iff it solves T in

EFD
 Weakest FDs for T are the same in

the two models

What about generic (colored) tasks?

19

A task characterization: k-concurrency
  Every task T is characterized by its

concurrency level:
 The largest k such that T can be solved

k-concurrently

 k≥1 (every task is solvable 1-concurrently)
 n-concurrent solvability = wait-freedom
 k-set agreement has concurrency level k

20

A task characterization

  k-concurrency can be simulated with anti-Ωk
 A k-concurrently solvable task is solvable with

anti-Ωk (in EFD) [GG11,this paper]

  Each task is equivalent to some form of set
agreement:
 The WFD for every task of concurrency level k is

anti-Ωk

21

A hierarchy of n-process tasks
 concurrency

level

 n‐set agreement

(n‐1)‐set agreement

Consensus

. . .

Trivial tasks ‐ no FD needed

universal tasks ‐ Ω

n

n‐1

1

The easiest unsolvable
tasks ‐ anP‐Ω

k‐set agreement k

. . .

The easiest k‐concurrent
tasks anP‐Ωk

22

Implication: renaming
  (j,m)-renaming: j participants coming out with

names in {1,…,m}
 In the conventional FD model, the problem is a FD

  (j,j+k-1)-renaming: k-concurrently solvable
 A variation of wait-free solution of (j,2j-1)-

renaming [Attyia et al,1990]
 Concurrency lower bound is k
  What about (k+1)-concurrency?

23

Strong renaming (k=1)
(j,j)-renaming:
  Strong j-renaming has concurrency level 1

 By reduction to 2-process consensus [EBG09]
  The WFD for strong j-renaming is Ω

Consensus, strong j‐renaming universal tasks ‐ Ω 1

24

Weak j-renaming (k=j-1)
(j,2j-2)-renaming:
  When j is prime power: concurrency level j-1

 (j,2j-2)-renaming impossible wait-free (j-concurrently) [CR,
2010]

 The WFD for (j,2j-1)-renaming is anti-Ωj-1

(j‐1)‐set agreement, weak j‐renaming j‐1
The easiest (j‐1)‐concurrent

tasks: anP‐Ωj‐1

  When j is not prime power: (j,2j-2)-renaming solvable wait-
free [CR, 2011], and thus with anti-Ωj: concurrency level j
  Can we solve (j,2j-3)-renaming with anti-Ωj?
  Concurrency level of (j,m)-renaming?

25

Outcomes
  New EFD framework, separating

computation from synchronization
 New understanding of what does it mean to

solve a task (with a FD)
  Complete characterization of all n-process

tasks, based on their concurrency levels
1,…,n
 Including colored ones, like renaming or

k-set agreement among a subset of k+1
processes

26

New avenue for simulations
Asynchronous:
  t-resilience ≅ t+1-process wait-freedom

[BG93,Gaf09]
  Synchronous set agreement time lower bound

[Gaf98,GGP05]
  k-concurrency ≅ k-set consensus [GG10]
  Adversaries, disagreement power

[DFGT10,GK10]

EFD enables simulating protocols with FDs!

27

“Problems cannot be solved by the same level
of thinking that created them”

Full version: http://arxiv.org/abs/1109.3056

THANK YOU!

28

EFD vs. FD
  Conventional (FD) model is a special case of

EFD
 Bijection between C-processes and S-processes
 A C-process fails iff its S-process counterpart

does

  In EFD, the weakest failure detector is at least
as strong
 Should let a C-process decide even if its S-

counterpart has failed

29

A puzzle
Solving consensus among every pair of processes

(with a FD) is as hard as solving consensus
among all [Delporte et al., JACM 2010]

What about k-set agreement?

In EFD:
If D solves k-set agreement among some set U of k

+1 C-processes, then D solves k-set agreement
among all C-processes

(simple simulation of processes in U)

