
Wait-Freedom with Advice

 Petr Kuznetsov

Telecom ParisTech

Joint work with Carole Delporte and Hugues Fauconnier

(U Paris Diderot) and Eli Gafni (UCLA)

ACM PODC 2012

Mefosyloma 2013

2

Thinking “distributed” is hard

  Not natural

  Multitude of abstractions and models

  (Almost) no categorization/complexity classes

A theory of distributed computational
complexity?

3

4

This talk

  Motivate and propose wait-free task solutions
with external failure detection (EFD)

  Propose a complete hierarchy for tasks based
on the weakest EFD

5

Solving a task: correctness

6

Distributed tasks (I,O,Δ)

•  I – set of input vectors
•  O – set of output vectors

•  Task specificaPon Δ: I→2O 

k‐set agreement:

•  Processes start with inputs in V (|V|>k)
•  The set of outputs is a subset of inputs of size at most k
•  k=1: consensus

•  Colorless: allows for adopPng inputs or outputs

7

Solving a task: progress

  Every process outputs

 Unrealistic for systems with
failures or very long delays

  Every process taking enough steps
outputs (wait-freedom)

  Individual progress is a liveness

property: a slow process may
wake up and make progress later

  No notion of failures

8

Unfortunately…

Most important tasks are not solvable in fault-
prone asynchronous systems

 Consensus, set agreement, renaming, symmetry

breaking

Solvable in synchronous systems

9

Modeling synchrony

  Explicit bounds on communication and
relative processing speed [DDS86]

 Too coarse-grained

  Failure detectors [CHT96]

 An oracle providing hints on failure pattern: on

where and when failures occurred

 Formally: FD D is a map from failure pattern to a

set of failure detector histories

10

Failure detectors: examples

  Perfect P [CT96]

Outputs a set of suspected processes

  No process is suspected before it fails

  Eventually, all faulty processes are always

suspected

  Eventual leader Ω [CHT96]

Outputs a single leader process

  Eventually, the same correct process is always a

leader

11

Weakest failure detectors

D is the weakest failure detector for a task T if

  Sufficient: D solves T

  Necessary: weaker that any Dʼ that solves T

  consensus: Ω (the leader FD) [CHT96]

  set agreement: anti-Ω [Zie07]

  k-set agreement: anti-Ωk [GK09]

12

Private failure detection

Bob is not coming back! Bob is still here!

Bobʼs FD module is private!

13

Progress with failure detectors

Assuming that every correct process takes

enough steps…

  every correct process outputs

 Individual progress depends on other processes

But can we solve a “hard” task wait-free?

External oracle: wait-freedom with advice

14

External oracles

External oracle

15

External failure detection

C-processes

(computation)

S-processes

(synchronization)

16

Wait-freedom with advice

Assuming that every correct synchronization process

takes enough steps

  Each computation process taking enough steps

outputs

 Wait-freedom for C-processes

…

17

EFD vs. FD

  Conventional (FD) model is a special case of EFD

  In EFD, the weakest failure detector for T is at least

as strong as in FD

18

Special case: colorless tasks

  EFD and FD are equivalent w.r.t.
colorless tasks:

 D solves a colorless T iff it solves T in

EFD

 Weakest FDs for T are the same in

the two models

What about generic (colored) tasks?

19

A task characterization: k-concurrency

  Every task T is characterized by its

concurrency level:

 The largest k such that T can be solved

k-concurrently

 k≥1 (every task is solvable 1-concurrently)

 n-concurrent solvability = wait-freedom

 k-set agreement has concurrency level k

20

A task characterization

  k-concurrency can be simulated with anti-Ωk

 A k-concurrently solvable task is solvable with

anti-Ωk (in EFD) [GG11,this paper]

  Each task is equivalent to some form of set
agreement:

 The WFD for every task of concurrency level k is

anti-Ωk

21

A hierarchy of n-process tasks

 concurrency

level

 n‐set agreement

(n‐1)‐set agreement

Consensus

. . .

Trivial tasks ‐ no FD needed

universal tasks ‐ Ω

n

n‐1

1

The easiest unsolvable
tasks ‐ anP‐Ω

k‐set agreement k

. . .

The easiest k‐concurrent
tasks anP‐Ωk

22

Implication: renaming

  (j,m)-renaming: j participants coming out with

names in {1,…,m}

 In the conventional FD model, the problem is a FD

  (j,j+k-1)-renaming: k-concurrently solvable

 A variation of wait-free solution of (j,2j-1)-

renaming [Attyia et al,1990]

 Concurrency lower bound is k

  What about (k+1)-concurrency?

23

Strong renaming (k=1)

(j,j)-renaming:

  Strong j-renaming has concurrency level 1

 By reduction to 2-process consensus [EBG09]

  The WFD for strong j-renaming is Ω

Consensus, strong j‐renaming universal tasks ‐ Ω 1

24

Weak j-renaming (k=j-1)

(j,2j-2)-renaming:

  When j is prime power: concurrency level j-1

 (j,2j-2)-renaming impossible wait-free (j-concurrently) [CR,
2010]

 The WFD for (j,2j-1)-renaming is anti-Ωj-1

(j‐1)‐set agreement, weak j‐renaming j‐1
The easiest (j‐1)‐concurrent

tasks: anP‐Ωj‐1

  When j is not prime power: (j,2j-2)-renaming solvable wait-
free [CR, 2011], and thus with anti-Ωj: concurrency level j

  Can we solve (j,2j-3)-renaming with anti-Ωj?

  Concurrency level of (j,m)-renaming?

25

Outcomes

  New EFD framework, separating

computation from synchronization

 New understanding of what does it mean to

solve a task (with a FD)

  Complete characterization of all n-process

tasks, based on their concurrency levels
1,…,n

 Including colored ones, like renaming or

k-set agreement among a subset of k+1
processes

26

New avenue for simulations

Asynchronous:

  t-resilience ≅ t+1-process wait-freedom

[BG93,Gaf09]

  Synchronous set agreement time lower bound

[Gaf98,GGP05]

  k-concurrency ≅ k-set consensus [GG10]

  Adversaries, disagreement power

[DFGT10,GK10]

EFD enables simulating protocols with FDs!

27

“Problems cannot be solved by the same level
of thinking that created them”

Full version: http://arxiv.org/abs/1109.3056

THANK YOU!

28

EFD vs. FD

  Conventional (FD) model is a special case of

EFD

 Bijection between C-processes and S-processes

 A C-process fails iff its S-process counterpart

does

  In EFD, the weakest failure detector is at least
as strong

 Should let a C-process decide even if its S-

counterpart has failed

29

A puzzle

Solving consensus among every pair of processes

(with a FD) is as hard as solving consensus
among all [Delporte et al., JACM 2010]

What about k-set agreement?

In EFD:

If D solves k-set agreement among some set U of k

+1 C-processes, then D solves k-set agreement
among all C-processes

(simple simulation of processes in U)

