
 
LIU, Yang   
 
liuyang@comp.nus.edu.sg 
 
Senior Research Scientist  
Temasek Laboratories 
National University of Singapore 
 
 



 Motivation and Background 
 Introduction to PAT tool 

 in model checking techniques 

▪ Case study in handling fairness assumptions 

 in applying model checking 

▪ Case study in verify the correctness of concurrent 
objects 

 On-going Works 
 Vision in model checking 
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 Concurrent and real-time systems are everywhere 
 Internet, embedded systems, mobile devices… 
 

 The design of concurrent and real-time systems are notoriously 
difficult problems 
 concurrent executions, shared resources, timing factors and so on 
 Increasing complexity 
 

 Correctness is the one of the key problems 
 Mission critical systems accept no failure:  
 Intel Pentium II bug, Ariane 5 failure, Therac-25 accident 
 

 Principal validation methods 
 Simulation and Testing,  
 Deductive verification and  
 Model checking 
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 Determining whether a model satisfies a property 
by the means of exhaustive searching (fully 
automatic) 

 
 
 
 
 
 
 
 
 

Model 

Model 
Checker 

Property 

Counterexample! 
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 Using existing model checkers 
 Steep learning curve 
 Existing model checkers may be inefficient or insufficient 

▪ E.g. multi-party barrier synchronization is difficult in SPIN 

 How to express the properties 
 

 Extending existing model checkers 
 Model checker’s code is complicated 
 

 Developing a new model checkers 
 Complicated functions: 

▪ language parsing, system simulation, verification algorithms, state 
reduction techniques and counterexample generation and display 

 Decades of efforts to build a solid model checker 
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 An self-contained framework to support the 
development of formal verification tools 

 A wide range of systems 

▪ Concurrent, real-time and probabilistic systems 

 Extensible architecture 

 Modular design 
▪ 10+ Modules for different application domains 

 Various model checking techniques 
▪ Explicit model checking 

▪ Symbolic model checking 

▪ Assume-guarantee model checking 

▪ … 
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 An self-contained framework to support the development of formal verification tools [ICSE 
08, CAV 09, ATVA 10, ISSRE 11, CAV 12] 
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Syntax 

Define 
Semantics 

Visualize 
Trace 

Optimization 

Develop MC Algorithms 

Property 
Language 
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 5 Years Development 
 National University of Singapore 
 Singapore University of Technology and Design  
 

 PAT research team (~ 30 persons):  
 3 Faculty + 8 post doc + 15 ph.d. + 5 RA  
 

 1 Million lines of code, 10+ modules with 200+ build in 
examples  
 

 Attracted more than 1900 registered users in the last 5 years 
from more than 400 organizations, e.g. Microsoft, HP, ST Elec, 
Oxford Univ., … Sony, Hitachi,  Canon.  
 

 Used as an educational tool in many universities. 
 
 Japanese PAT user group formed in Sep 2009.    

10 



 Featured modeling languages proposed [TASE 09, ICFEM 09-b, ICFEM 11-b] 
 
 
 
 
 

 Novel MC algorithms developed 
 Fast LTL model checking with fairness assumption [ICFEM 09, CAV 2009] 

▪ Multi-core version [ICFEM 10] 

 Fast trace refinement checking [Isola 08, icfem 12] 
 

 Novel MC techniques developed 
 Real-time abstraction techniques [ICFEM 09-b, TOSEM 11, FM 12] 

▪ Zone abstraction, Non-zeno behaviors , BDD 

 Develop different reduction techniques 
▪ Symmetry reduction [FM 11] 
▪ Process counter abstraction [FM 09] 
▪ (Dynamic/compositional) partial order reduction [ICFEM 11-d]  

 Symbolic model checking libraries for hierarchical systems [ASE 11] 
 Compositional verification: 

▪ Assume-guarantee reasoning techniques [ATVA 11, FM 12] 

Concurrency + Real-time + Probability + Hierarchy 
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 Fairness is important in concurrent systems to 
rule out un-realistic system behaviors 

 Enabled processes/choices can not be infinitely 
ignored 

 
 Examples: 

 Peterson’s mutual exclusion protocol 

▪ weak fairness 

 Token circulation or leader election in network rings 

▪ Strong global fairness 
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Weak fairness 
 if an event eventually becomes enabled forever, infinitely many 

occurrences of the event must be observed. 
 

 
 

Strong fairness 
 if an event is infinitely often enabled (or in other words, repeatedly 

enabled), infinitely many occurrences of the event must be observed. 
 

 
 

Global fairness 
 If a step is infinitely often enabled, it must be taken infinitely 
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 Previous Approaches 
 Naive: specify the fairness as part of the property 
 Different algorithms for different fairness are also available  
 

 Our approach 
 Variant of Tarjan’s SCC searching algorithm 

▪ Check whether the counterexample satisfy the constraints 

 Generic and Handling all types of fairness 
▪ weak fairness: SCC search  
▪ strong fairness: strongly connected sub-graph search 
▪ global fairness = terminal SCC search  

 Flexible 
▪ Fairness on individual events 

 Efficient  
▪ Linear to the number of edges 

 A parallel version for multi-core CPU 
▪ Scalable to N-cores 
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 Model Checking Lineariability via Refinement [FM 09, TSE12] 
 Model Checking a Lazy Concurrent List-Based Set Algorithm [SSIRI 10-

b] 
 

 Analyzing Multi-agent Systems with Probabilistic Model 
Checking Approach [ICSE 12, PRIMA 12] 
 

 An Automatic Approach to Model Checking UML State Machines 
[SSIRI 10-a] 
 

 Verification of Population Ring Protocols in PAT [TASE 09-a] 
 

 Model Checking a Model Checker: A Code Contract Combined 
Approach [ICFEM 10-a] 
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 NesC module [ICFEM 11-c, Sensys 11] 
 Bug detected for Trickle algorithm 

▪ a code propagation algorithm which is intended to reduce 
network traffic 

 
 Web service module [APSEC 10, ICFEM 11-d] 

 
 Security protocol module [FCS 12] 

 
 Stateflow module [STTT 12] 

 
 Event recording automata module [ATVA 11] 
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Concurrent objects (shared queue, stacks) are hard to design 
correctly 

Exclusive access (correctness) vs. maximum interleaving (performance) 
 
 
Linearizability is an accepted correctness criterion for shared objects.  

A shared object is linearizable if each operation on the object can be 
understood as occurring instantaneously at some point, (a.k.a. 
linearization point) 

 
 
 
 
 
 
 

Automatic verification of linearizability is challenging 
Rely on the knowledge of linearization points 
Linearization points are hard to be statically determined 
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p0:    Winv(x,1)               Wres(x)             Rinv(y)             Rres(y,2)  
p1:                  Winv(y,2)             Wres(y)              Rinv(x)                 Rres(x,1)   

p0:    W (x,1)                 R(y,2)  
p1:                                 W(y,2)                                                       R(x,1)   



 Trace σ  is linearizable if there exists a sequential 
permutation π of σ such that 
 1) for each object oi, π|oi is a legal sequential history 

(i.e. π respects the sequential specification of the 
objects), and 

 2) if op1 <σ op2, then op1 <π op2 (i.e., π  respects the 
run-time ordering of operations). 

 Examples 

 p0:    Winv(x,1)               Wres(x)             Rinv(y)             Rres(y,2)  
p1:                  Winv(y,2)             Wres(y)              Rinv(x)                 Rres(x,1)   

p0:    Winv(x,1) Wres(x)                                 Rinv(y) Rres(y,2)              
p1:                                     Winv(y,2) Wres(y)                                 Rinv(x)  Rres(x,1)   

p0:    Winv(x,1)               Wres(x)             Rinv(y)               Rres(y,0)  
p1:                   Winv(y,2)             Wres(y)              Rinv(x)                   Rres(x,1)   
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 Specify each operation op of a shared object o 
on a process pi using three atomic steps:  
 the invocation action inv(op)i,  

 the linearization action lin(op)i, and (Invisible 
event) 

 the response action res(op, resp)i . 
 Event-base formalism: CSP# 
 Is linearizable! 

 
 
 
 FM 2009 
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 Consider the implementment of object o.  
 The visible events of impl are also those inv(op)i 's 

and res(op, resp)i 's. 
 
 
 
 
 
 
 
 
 
 

 Is linearizable? 
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 A novel refinement 
checking algorithm to verify 
linearizability automatically 
 partial order reduction 

 symmetry reduction 
 

 Substantial Experiments: 
 Stack,  

 Queue,  

 K-valued Register  

 Mailbox algorithm 

 SNZI. 
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 Motivation and Background 
 Research contributions 
 On-going Works 

 MC in New domains 

 MC techniques 

 Others 

 Vision in model checking 
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 Web Service (Orc language /BPEL language) (in implementation) 
 

 Sensor networks system written in NesC (in optimization) 
 Distributed algorithms 

 
 Context-aware systems (in design phase) 

 
 

 UML (or FUML) diagram (in design phase) 
 Merlion 2012 funding on “Software Verification from Design to Implementation” 
 
 

 Software Architecture Description Language (in implementation) 
 Event Grammar/ADL 
 

 Verification of C# Programs (in progress) 
 
 

 Multi-agent Systems (in progress) 
 
 

 Timed Transition Systems (in progress) 
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 Research and Development in the Formal Verification of System Design 
and Implementation.  
 Principal Investigator  
 S$1,150,000.  
 3 RA, 3 Post Docs 
 

 Security protocol verification 
 Get models from implementations 
 Trusted Platform Module 
 

 Assembly Code Verification (in implementation) 
 Model checking assembly code 
 Model Abstraction from assembly code 
 

 Automatic generation of correct implementation (in implementation) 
 Code generation from PAT models to C/C++ code for embedded system or 

mobile applications (in testing phase) 
 Security protocol code generation 
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 Automatic symmetry detection and reduction (in design phase). 
 

 Probabilistic Model Checking [ICFEM 2011] (in testing phase) / 
Statistical Model Checking (in implementation phase) 
 

 Symbolic modeling checking library (using BDD) for hierarchical 
systems 
 CSP/LTS (in testing phase) [ASE 2011] 
 TA/RTS (in implementation phase) [FM12] 
 

 Assume-guarantee verification for real-time [ATVA 11, FM12] (in 
optimization) and probabilistic systems (in implementation) 
 

 Multi-core model checking algorithms [ICFEM 09-a] and swarm 
verification techniques (in implementation)  
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 We not only aim to develop a verifier, but rather to build a 
framework for realizing system verification techniques 

 Model checking techniques: EMC, SMC (SAT/BDD/SMT), A-G, 
CEGAR 

 Different domains: web services, sensor network, distributed 
algorithms, security, multi-agent systems, bio… 

 Different semantics model: LTS/TTS/MDP/TA/PTA… 

 Different algorithms: LTL/Refinement/Multi-core..  

 Different reduction techniques: POR, Symmetry detection and 
reduction, process counter abstraction 

 Applications of model checking: testing, planning, SE 
(reliability/product line/software-eco systems…) 
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 Security products design verification 

 
 

 Verify Flash Memory Device Driver 
 
 

 Japanese Industrial Workshop on 23rd Feb 2012 
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Challenge 1: The existence 
of multiple agents usually 
indicates complicated 
system structure 
 
Challenge 2: Agents or 
environment may have 
random behaviors, which 
generates probabilistic 
characteristics 

Extensive Simulation 
 Simulating the system behaviors; 

quite convenient 
 Drawback: results are usually 

inaccurate and some properties are 
not supported 

 
Mathematical Model 
 A good way to understanding the 

whole system and properties can be 
proved directly 

 Drawback: very difficult to build a 
correct math model; need ingenuity 



 Using general model checkers:  

 Cannot verify some specific properties in MAS, such 
as knowledge and ATL; not so convenient to build 
MAS systems with their languages since MAS has its 
own characteristics; 

 
 Specific MAS model checkers 

 MCMAS: supports ATL; no probabilistic behaviors 

 MCK: supports probability; only supports 
knowledge; based on DTMC instead of MDP 



 Designing an expressive modeling language to conveniently 
model MAS with probabilistic behaviors 
 
 
 
 
 
 
 
 
 

 Supporting various properties in this kind of systems 
 System level : Reachability checking, LTL checking and reward 

checking are used to analyze the overall behaviors of the system; 
 Agent level : Knowledge reasoning is used to check agent’s epistemic 

properties. 
 Knowledge reasoning in PMA 
 36 

Agent A { 
    var state; 
    ChooseAction = {1: {action=1} 
                                       2: {action=2}}; 
     Update = [action==1]{state=1} 
                        [] 
                        [action==2]{state=2}; 
} 

System = A and B and Environment; 



 Dispersion Game is the generalization of anti-coordination game to an 
arbitrary number of players and actions. 
 two strategies: basic simple strategy (BSS) and extended simple strategies (ESS). 
 

 Two important properties of the system are considered 
 convergence  
 convergence rate 
 average rounds to MDO 
 

 Automatically verified using probabilistic model checking techniques 
 

 Better understandings of the dynamics of the strategies compared with 
empirical evaluations in previous work  
 The system becomes more dynamic due to the increase in the number of agents, 

making it more difficult for the agents to coordinate their actions.  
 

 The local max points in terms of the average number of rounds before convergence 
always correspond to those cases when the convergence property holds. 
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