

LIU, Yang

liuyang@comp.nus.edu.sg

Senior Research Scientist
Temasek Laboratories
National University of Singapore

 Motivation and Background
 Introduction to PAT tool

 in model checking techniques

▪ Case study in handling fairness assumptions

 in applying model checking

▪ Case study in verify the correctness of concurrent
objects

 On-going Works
 Vision in model checking

2

 Concurrent and real-time systems are everywhere
 Internet, embedded systems, mobile devices…

 The design of concurrent and real-time systems are notoriously
difficult problems
 concurrent executions, shared resources, timing factors and so on
 Increasing complexity

 Correctness is the one of the key problems
 Mission critical systems accept no failure:
 Intel Pentium II bug, Ariane 5 failure, Therac-25 accident

 Principal validation methods
 Simulation and Testing,
 Deductive verification and
 Model checking
 3

 Determining whether a model satisfies a property
by the means of exhaustive searching (fully
automatic)

Model

Model
Checker

Property

Counterexample!

4

5

 Using existing model checkers
 Steep learning curve
 Existing model checkers may be inefficient or insufficient

▪ E.g. multi-party barrier synchronization is difficult in SPIN

 How to express the properties

 Extending existing model checkers
 Model checker’s code is complicated

 Developing a new model checkers
 Complicated functions:

▪ language parsing, system simulation, verification algorithms, state
reduction techniques and counterexample generation and display

 Decades of efforts to build a solid model checker
 6

 An self-contained framework to support the
development of formal verification tools

 A wide range of systems

▪ Concurrent, real-time and probabilistic systems

 Extensible architecture

 Modular design
▪ 10+ Modules for different application domains

 Various model checking techniques
▪ Explicit model checking

▪ Symbolic model checking

▪ Assume-guarantee model checking

▪ …

7

 An self-contained framework to support the development of formal verification tools [ICSE
08, CAV 09, ATVA 10, ISSRE 11, CAV 12]

8

Define
Syntax

Define
Semantics

Visualize
Trace

Optimization

Develop MC Algorithms

Property
Language

9

 5 Years Development
 National University of Singapore
 Singapore University of Technology and Design

 PAT research team (~ 30 persons):
 3 Faculty + 8 post doc + 15 ph.d. + 5 RA

 1 Million lines of code, 10+ modules with 200+ build in
examples

 Attracted more than 1900 registered users in the last 5 years
from more than 400 organizations, e.g. Microsoft, HP, ST Elec,
Oxford Univ., … Sony, Hitachi, Canon.

 Used as an educational tool in many universities.

 Japanese PAT user group formed in Sep 2009.

10

 Featured modeling languages proposed [TASE 09, ICFEM 09-b, ICFEM 11-b]

 Novel MC algorithms developed
 Fast LTL model checking with fairness assumption [ICFEM 09, CAV 2009]

▪ Multi-core version [ICFEM 10]

 Fast trace refinement checking [Isola 08, icfem 12]

 Novel MC techniques developed
 Real-time abstraction techniques [ICFEM 09-b, TOSEM 11, FM 12]

▪ Zone abstraction, Non-zeno behaviors , BDD

 Develop different reduction techniques
▪ Symmetry reduction [FM 11]
▪ Process counter abstraction [FM 09]
▪ (Dynamic/compositional) partial order reduction [ICFEM 11-d]

 Symbolic model checking libraries for hierarchical systems [ASE 11]
 Compositional verification:

▪ Assume-guarantee reasoning techniques [ATVA 11, FM 12]

Concurrency + Real-time + Probability + Hierarchy

11

Property

Model
Checker

Model

 Fairness is important in concurrent systems to
rule out un-realistic system behaviors

 Enabled processes/choices can not be infinitely
ignored

 Examples:

 Peterson’s mutual exclusion protocol

▪ weak fairness

 Token circulation or leader election in network rings

▪ Strong global fairness

12

Weak fairness
 if an event eventually becomes enabled forever, infinitely many

occurrences of the event must be observed.

Strong fairness
 if an event is infinitely often enabled (or in other words, repeatedly

enabled), infinitely many occurrences of the event must be observed.

Global fairness
 If a step is infinitely often enabled, it must be taken infinitely

13

 Previous Approaches
 Naive: specify the fairness as part of the property
 Different algorithms for different fairness are also available

 Our approach
 Variant of Tarjan’s SCC searching algorithm

▪ Check whether the counterexample satisfy the constraints

 Generic and Handling all types of fairness
▪ weak fairness: SCC search
▪ strong fairness: strongly connected sub-graph search
▪ global fairness = terminal SCC search

 Flexible
▪ Fairness on individual events

 Efficient
▪ Linear to the number of edges

 A parallel version for multi-core CPU
▪ Scalable to N-cores

14

15

 Model Checking Lineariability via Refinement [FM 09, TSE12]
 Model Checking a Lazy Concurrent List-Based Set Algorithm [SSIRI 10-

b]

 Analyzing Multi-agent Systems with Probabilistic Model
Checking Approach [ICSE 12, PRIMA 12]

 An Automatic Approach to Model Checking UML State Machines
[SSIRI 10-a]

 Verification of Population Ring Protocols in PAT [TASE 09-a]

 Model Checking a Model Checker: A Code Contract Combined
Approach [ICFEM 10-a]

16

 NesC module [ICFEM 11-c, Sensys 11]
 Bug detected for Trickle algorithm

▪ a code propagation algorithm which is intended to reduce
network traffic

 Web service module [APSEC 10, ICFEM 11-d]

 Security protocol module [FCS 12]

 Stateflow module [STTT 12]

 Event recording automata module [ATVA 11]

17

Concurrent objects (shared queue, stacks) are hard to design
correctly

Exclusive access (correctness) vs. maximum interleaving (performance)

Linearizability is an accepted correctness criterion for shared objects.

A shared object is linearizable if each operation on the object can be
understood as occurring instantaneously at some point, (a.k.a.
linearization point)

Automatic verification of linearizability is challenging
Rely on the knowledge of linearization points
Linearization points are hard to be statically determined

18

p0: Winv(x,1) Wres(x) Rinv(y) Rres(y,2)
p1: Winv(y,2) Wres(y) Rinv(x) Rres(x,1)

p0: W (x,1) R(y,2)
p1: W(y,2) R(x,1)

 Trace σ is linearizable if there exists a sequential
permutation π of σ such that
 1) for each object oi, π|oi is a legal sequential history

(i.e. π respects the sequential specification of the
objects), and

 2) if op1 <σ op2, then op1 <π op2 (i.e., π respects the
run-time ordering of operations).

 Examples

 p0: Winv(x,1) Wres(x) Rinv(y) Rres(y,2)
p1: Winv(y,2) Wres(y) Rinv(x) Rres(x,1)

p0: Winv(x,1) Wres(x) Rinv(y) Rres(y,2)
p1: Winv(y,2) Wres(y) Rinv(x) Rres(x,1)

p0: Winv(x,1) Wres(x) Rinv(y) Rres(y,0)
p1: Winv(y,2) Wres(y) Rinv(x) Rres(x,1)

19

 Specify each operation op of a shared object o
on a process pi using three atomic steps:
 the invocation action inv(op)i,

 the linearization action lin(op)i, and (Invisible
event)

 the response action res(op, resp)i .
 Event-base formalism: CSP#
 Is linearizable!

 FM 2009

21

 Consider the implementment of object o.
 The visible events of impl are also those inv(op)i 's

and res(op, resp)i 's.

 Is linearizable?
22

23

 A novel refinement
checking algorithm to verify
linearizability automatically
 partial order reduction

 symmetry reduction

 Substantial Experiments:
 Stack,

 Queue,

 K-valued Register

 Mailbox algorithm

 SNZI.

24

 Motivation and Background
 Research contributions
 On-going Works

 MC in New domains

 MC techniques

 Others

 Vision in model checking

25

 Web Service (Orc language /BPEL language) (in implementation)

 Sensor networks system written in NesC (in optimization)
 Distributed algorithms

 Context-aware systems (in design phase)

 UML (or FUML) diagram (in design phase)
 Merlion 2012 funding on “Software Verification from Design to Implementation”

 Software Architecture Description Language (in implementation)
 Event Grammar/ADL

 Verification of C# Programs (in progress)

 Multi-agent Systems (in progress)

 Timed Transition Systems (in progress)
26

http://www.yorku.ca/

 Research and Development in the Formal Verification of System Design
and Implementation.
 Principal Investigator
 S$1,150,000.
 3 RA, 3 Post Docs

 Security protocol verification
 Get models from implementations
 Trusted Platform Module

 Assembly Code Verification (in implementation)
 Model checking assembly code
 Model Abstraction from assembly code

 Automatic generation of correct implementation (in implementation)
 Code generation from PAT models to C/C++ code for embedded system or

mobile applications (in testing phase)
 Security protocol code generation

27

 Automatic symmetry detection and reduction (in design phase).

 Probabilistic Model Checking [ICFEM 2011] (in testing phase) /
Statistical Model Checking (in implementation phase)

 Symbolic modeling checking library (using BDD) for hierarchical
systems
 CSP/LTS (in testing phase) [ASE 2011]
 TA/RTS (in implementation phase) [FM12]

 Assume-guarantee verification for real-time [ATVA 11, FM12] (in
optimization) and probabilistic systems (in implementation)

 Multi-core model checking algorithms [ICFEM 09-a] and swarm
verification techniques (in implementation)

28

 We not only aim to develop a verifier, but rather to build a
framework for realizing system verification techniques

 Model checking techniques: EMC, SMC (SAT/BDD/SMT), A-G,
CEGAR

 Different domains: web services, sensor network, distributed
algorithms, security, multi-agent systems, bio…

 Different semantics model: LTS/TTS/MDP/TA/PTA…

 Different algorithms: LTL/Refinement/Multi-core..

 Different reduction techniques: POR, Symmetry detection and
reduction, process counter abstraction

 Applications of model checking: testing, planning, SE
(reliability/product line/software-eco systems…)

 29

 [ICSE 12] Songzheng Song, Jianye Hao, Yang Liu, Jun Sun, Ho-Fung Leung, and Jin Song Dong. Analyzing Multi-agent Systems with Probabilistic Model
Checking Approach. The 34th International Conference on Software Engineering, 2012. (Accepted)

 [FCS 12] Luu Anh Tuan, Jun Sun, Yang Liu, Jin Song Dong, Xiaohong Li, and Quan Thanh Tho. SEVE: Automatic Tool for Verification of Security Protocols.
Frontiers of Computer Science, Special Issue on Formal Engineering Method, 6(1):57-75, 2012.

 [ASE 11] Truong Khanh Nguyen, Jun Sun, Yang Liu and Jin Song Dong. A Symbolic Model Checking Framework for Hierarchical Systems. The 26th IEEE/ACM
International Conference On Automated Software Engineering, pages 633-636, Lawrence, Kan., USA, Nov 6 - 11, 2011.

 [TOSEM 11] Jun Sun, Yang Liu, Jin Song Dong, Yan Liu, Ling Shi, Etienne, Andre. Modeling and Verifying Hierarchical Real-time Systems using Stateful Timed
CSP. The ACM Transactions on Software Engineering and Methodology (Accepted)

 [Sensys 11] Manchun Zheng, Jun Sun, David Sanán, Yang Liu, Jin Song Dong, Yu Gu. Demo: Towards Bug-free Implementations for Wireless Sensor Networks.
The 9th ACM Conference on Embedded Networked Sensor Systems, pages 407-408, Seattle, WA, USA, Nov 1 - 4, 2011.

 [ISSRE 11] Yang Liu, Jun Sun and Jin Song Dong. PAT 3: An Extensible Architecture for Building Multi-domain Model Checkers. The 22nd annual International
Symposium on Software Reliability Engineering, pages 190-199, Hiroshima, Japan, Nov 29 - Dec 2, 2011.

 [ATVA 11] Shang-Wei Lin, Etienne Andre, Jin Song Dong, Jun Sun, and Yang Liu. Efficient Algorithm for Learning Event-Recording Automata. The 9th
International Symposium on Automated Technology for Verification and Analysis pages 463-472, Taipei, Taiwan, October 11 - 14, 2011.

 [ICFEM 11-a] Zhenchang Xing, Jun Sun, Yang Liu and Jin Song Dong. Differencing Labeled Transition Systems. The 13th International Conference on Formal
Engineering Methods , pages 537-552, Durham, United Kingdom, October 25-28, 2011.

 [ICFEM 11-b] Jun Sun, Yang Liu, Songzheng Song and Jin Song Dong. PRTS: An Approach for Model Checking Probabilistic Real-time Hierarchical Systems. The
13th International Conference on Formal Engineering Methods, pages 147-162, Durham, United Kingdom, October 25-28, 2011.

 [ICFEM 11-c] Manchun Zheng, Jun Sun, Yang Liu, Jin Song Dong and Yu Gu. Towards a Model Checker for NesC and Wireless Sensor Networks. The 13th
International Conference on Formal Engineering Methods, pages 372-387, Durham, United Kingdom, October 25-28, 2011.

 [ICFEM 11-d] Tian Huat Tan, Yang Liu, Jun Sun and Jin Song Dong. Verification of Computation Orchestration System with Compositional Partial Order
Reduction. The 13th International Conference on Formal Engineering Methods, pages 98-114, Durham, United Kingdom, October 25-28, 2011.

 [FM 11] Shaojie Zhang, Jun Sun, Jun Pang, Yang Liu and Jin Song Dong. On Combining State Space Reductions with Global Fairness Assumptions. The 17th
International Symposium on Formal Methods, pages 432 - 447, Lero, Limerick, Ireland, June 20 - 24, 2011.

 [APSEC 10] Jun Sun, Yang Liu, Jin Song Dong, Geguang Pu and Tian Huat Tan. Model-based Methods for Linking Web Service Choreography and Orchestration.
The 17th Asia Pacific Software Engineering Conference, pages 166-175, Sydney, Australia, 30 November – 3 December 2010.

 [FSE 10] Yang Liu, Jun Sun and Jin Song Dong. Analyzing Hierarchical Complex Real-time Systems. The ACM SIGSOFT International Symposium on the
Foundations of Software Engineering, pages 365-366, Santa Fe, New Mexico, USA, 7-11 November 2010.

 [ICFEM 10-a] Jun Sun, Yang Liu and Bin Cheng. Model Checking a Model Checker: A Code Contract Combined Approach. The 12th International Conference on
Formal Engineering Methods, pages 518-533, Shang Hai, China, 16-19 November 2010.

 [ATVA 10] Yang Liu, Jun Sun, Jin Song Dong. Developing Model Checkers Using PAT. 8th International Symposium on Automated Technology for Verification
and Analysis, pages 371-377, Singapore, 2010.

 [ICFEM 10-b] Jun Sun, Songzheng Song and Yang Liu. Model Checking Hierarchical Probabilistic Systems. The 12th International Conference on Formal
Engineering Methods, pages 388-403, Shang Hai, China, 16-19 November 2010.

 [ASE 10] Zhenchang Xing, Jun Sun, Yang Liu and Jin Song Dong. SpecDiff: Debugging Formal Specifications. The 25th IEEE/ACM International Conference on
Automated Software Engineering, pages 353-354, Antwerp, Belgium, 20-24 September 2010.

 [SSIRI 10-1] Shao Jie Zhang, Yang Liu. An Automatic Approach to Model Checking UML State Machines. The 4th IEEE International Conference on Secure
Software Integration and Reliability Improvement. pages 1-6, Singapore, June, 2010.

 [SSIRI 10-2] Shaojie Zhang and Yang Liu. Model Checking a Lazy Concurrent List-Based Set Algorithm. The 4th IEEE International Conference on Secure
Software Integration and Reliability Improvement. pages 43-52, Singapore, June, 2010. Best Paper Awards

31

http://dx.doi.org/10.1007/s11704-012-2903-3
http://dx.doi.org/10.1007/s11704-012-2903-3
http://dx.doi.org/10.1007/s11704-012-2903-3
http://dx.doi.org/10.1007/s11704-012-2903-3
http://dx.doi.org/10.1007/s11704-012-2903-3
http://dx.doi.org/10.1109/ASE.2011.6100143
http://doi.acm.org/10.1145/2070942.2071013
http://doi.acm.org/10.1145/2070942.2071013
http://doi.acm.org/10.1145/2070942.2071013
http://doi.ieeecomputersociety.org/10.1109/ISSRE.2011.19
http://doi.ieeecomputersociety.org/10.1109/ISSRE.2011.19
http://doi.ieeecomputersociety.org/10.1109/ISSRE.2011.19
http://dx.doi.org/10.1007/978-3-642-24372-1_35
http://dx.doi.org/10.1007/978-3-642-24372-1_35
http://dx.doi.org/10.1007/978-3-642-24372-1_35
http://dx.doi.org/10.1007/978-3-642-24559-6_36
http://dx.doi.org/10.1007/978-3-642-24559-6_36
http://dx.doi.org/10.1007/978-3-642-24559-6_36
http://dx.doi.org/10.1007/978-3-642-24559-6_36
http://dx.doi.org/10.1007/978-3-642-24559-6_12
http://dx.doi.org/10.1007/978-3-642-24559-6_12
http://dx.doi.org/10.1007/978-3-642-24559-6_12
http://dx.doi.org/10.1007/978-3-642-24559-6_26
http://dx.doi.org/10.1007/978-3-642-24559-6_26
http://dx.doi.org/10.1007/978-3-642-24559-6_26
http://dx.doi.org/10.1007/978-3-642-24559-6_26
http://dx.doi.org/10.1007/978-3-642-24559-6_9
http://dx.doi.org/10.1007/978-3-642-24559-6_9
http://www.springerlink.com/content/n24745221p6q2321/
http://portal.acm.org/citation.cfm?id=1931918
http://portal.acm.org/citation.cfm?id=1931918
http://portal.acm.org/citation.cfm?id=1931918
http://portal.acm.org/citation.cfm?id=1882350
http://portal.acm.org/citation.cfm?id=1882350
http://portal.acm.org/citation.cfm?id=1882350
http://www.springerlink.com/content/41v1855413800574/
http://www.springerlink.com/content/80pg03408j416941/
http://www.springerlink.com/content/a472125388x12552/
http://portal.acm.org/citation.cfm?id=1859072
http://portal.acm.org/citation.cfm?id=1859072
http://www.computer.org/portal/web/csdl/doi/10.1109/SSIRI-C.2010.11
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=5502856
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=5502856
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=5502856

 [ICFEM 09-a] Yang Liu, Jun Sun and Jin Song Dong. Scalable Multi-Core Model Checking Fairness Enhanced Systems.
11th International Conference on Formal Engineering Methods. pages 426-445, Rio de Janeiro, Brazil, December, 2009.

 [ICFEM 09-b] Jun Sun, Yang Liu, Jin Song Dong and Xian Zhang. Verifying Stateful Timed CSP using Implicit Clocks and
Zone Abstraction. 11th International Conference on Formal Engineering Methods. pages 581-600, Rio de Janeiro, Brazil,
December, 2009.

 [FM 09-a] Jun Sun, Yang Liu, Abhik Roychoudhury, Shanshan Liu and Jin Song Dong. Fair Model Checking with Process
Counter Abstraction. The 16th International Symposium on Formal Methods. pages 123 - 139, Eindhoven, the Netherlands,
November, 2009.

 [FM 09-b] Yang Liu, Wei Chen, Yanhong A. Liu and Jun Sun. Model Checking Lineariability via Refinement. The 16th
International Symposium on Formal Methods. pages 321-337, Eindhoven, the Netherlands, November, 2009.

 [CAV 09] Jun Sun, Yang Liu, Jin Song Dong and Jun Pang. PAT: Towards Flexible Verification under Fairness. The 21th
International Conference on Computer Aided Verification, pages 709-714, Grenoble, France, June, 2009.

 [TASE 09-a] Yang Liu, Jun Pang, Jun Sun and Jianhua Zhao. Verification of Population Ring Protocols in PAT. The 3rd IEEE
International Symposium on Theoretical Aspects of Software Engineering, pages 81 - 89, Tian Jing, China, July, 2009.

 [TASE 09-b] Jun Sun, Yang Liu, Jin Song Dong and Chun Qing Chen. Integrating Specification and Programs for System
Modeling and Verification. The 3rd IEEE International Symposium on Theoretical Aspects of Software Engineering (TASE
2009), pages 127 - 135, Tian Jing, China, July, 2009.

 [SEKE 09] Shao Jie Zhang, Yang Liu, Jun Sun, Jin Song Dong, Wei Chen and Yanhong A. Liu. Formal Verification of Scalable
NonZero Indicators. The 21st International Conference on Software Engineering and Knowledge Engineering pages 406-
411, Boston, Massachusetts, USA, July 1-3, 2009.

 [ICFEM 08] Jun Sun, Yang Liu, Jin Song Dong and Hai H. Wang. Specifying and Verifying Event-based Fairness Enhanced
Systems. The 10th International Conference on Formal Engineering Methods (ICFEM 2008), pages 318-337, Japan, October,
2008.

 [ISoLA 08] Jun Sun, Yang Liu and Jin Song Dong. Model Checking CSP Revisited: Introducing a Process Analysis Toolkit.
The Third International Symposium on Leveraging Applications of Formal Methods, Verification and Validation, pages 307-
322, Porto Sani, Greece, October 13-15, 2008.

 [TASE 08] Jun Sun, Yang Liu, Jin Song Dong and Jing Sun. Bounded Model Checking of Compositional Processes. The 2nd
IEEE International Symposium on Theoretical Aspects of Software Engineering,pages 23-30, Nanjing, China, June 17-19,
2008.

 [ICSE 08] Yang Liu, Jun Sun and Jin Song Dong. An Analyzer for Extended Compositional Processes. ICSE Companion,
pages 919-920, Leipzig, Germany, 2008.

32

http://www.springerlink.com/content/t20246537n4ruw1w/
http://www.springerlink.com/content/t20246537n4ruw1w/
http://www.springerlink.com/content/t20246537n4ruw1w/
http://www.springerlink.com/content/t5120281288446k2/
http://www.springerlink.com/content/t5120281288446k2/
http://www.springerlink.com/content/t5120281288446k2/
http://www.springerlink.com/content/t5120281288446k2/
http://www.springerlink.com/content/t5120281288446k2/
http://www.springerlink.com/content/g9x418h563240884/
http://www.springerlink.com/content/g9x418h563240884/
http://www.springerlink.com/content/5l72546040254p24/
http://www.springerlink.com/content/5l72546040254p24/
http://www.springerlink.com/content/5l72546040254p24/
http://www.springerlink.com/content/5l72546040254p24/
http://www.springerlink.com/content/0321170v636j1853/
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=5198490
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=5198495
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=5198495
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=5198495
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=5198495
http://www.springerlink.com/content/y436513803766164/
http://www.springerlink.com/content/y436513803766164/
http://www.springerlink.com/content/y436513803766164/
http://www.springerlink.com/content/y436513803766164/
http://www.springerlink.com/content/p0v16j3660211015/
http://portal.acm.org/citation.cfm?id=1382381
http://portal.acm.org/citation.cfm?doid=1370175.1370187

 Security products design verification

 Verify Flash Memory Device Driver

 Japanese Industrial Workshop on 23rd Feb 2012

33

http://www.stee.com.sg/index.html

34

Challenge 1: The existence
of multiple agents usually
indicates complicated
system structure

Challenge 2: Agents or
environment may have
random behaviors, which
generates probabilistic
characteristics

Extensive Simulation
 Simulating the system behaviors;

quite convenient
 Drawback: results are usually

inaccurate and some properties are
not supported

Mathematical Model
 A good way to understanding the

whole system and properties can be
proved directly

 Drawback: very difficult to build a
correct math model; need ingenuity

 Using general model checkers:

 Cannot verify some specific properties in MAS, such
as knowledge and ATL; not so convenient to build
MAS systems with their languages since MAS has its
own characteristics;

 Specific MAS model checkers

 MCMAS: supports ATL; no probabilistic behaviors

 MCK: supports probability; only supports
knowledge; based on DTMC instead of MDP

 Designing an expressive modeling language to conveniently
model MAS with probabilistic behaviors

 Supporting various properties in this kind of systems
 System level : Reachability checking, LTL checking and reward

checking are used to analyze the overall behaviors of the system;
 Agent level : Knowledge reasoning is used to check agent’s epistemic

properties.
 Knowledge reasoning in PMA
 36

Agent A {
 var state;
 ChooseAction = {1: {action=1}
 2: {action=2}};
 Update = [action==1]{state=1}
 []
 [action==2]{state=2};
}

System = A and B and Environment;

 Dispersion Game is the generalization of anti-coordination game to an
arbitrary number of players and actions.
 two strategies: basic simple strategy (BSS) and extended simple strategies (ESS).

 Two important properties of the system are considered
 convergence
 convergence rate
 average rounds to MDO

 Automatically verified using probabilistic model checking techniques

 Better understandings of the dynamics of the strategies compared with
empirical evaluations in previous work
 The system becomes more dynamic due to the increase in the number of agents,

making it more difficult for the agents to coordinate their actions.

 The local max points in terms of the average number of rounds before convergence
always correspond to those cases when the convergence property holds.

38

