A Decomposition Theorem for Persistent Labelled Transition Systems

Eike Best and Philippe Darondeau

Carl von Ossietzky Universität Oldenburg, D-26111 Oldenburg, Germany

IRISA, campus de Beaulieu, F-35042 Rennes Cedex

December 2008

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Labelled transition systems with initial state

 (S, \rightarrow, T, s_0) where S are states T are labels $\rightarrow \subseteq (S \times T \times S)$ are the set of arcs $s_0 \in S$ is an initial state.

Reachability notation

- $s[t\rangle$ if $\exists s' \in S: (s, t, s') \in \rightarrow$ t is enabled (activated, firable) in state s.
- $s[t\rangle s'$ if $(s, t, s') \in \rightarrow$.
- Reachability:
 - $s[\varepsilon\rangle$ and $s[\varepsilon\rangle s$ are always true
 - $s[\sigma t\rangle$ iff there is some s'' with $s[\sigma\rangle s''$ and $s''[t\rangle s[\sigma t\rangle s'$ iff there is some s'' with $s[\sigma\rangle s''$ and $s''[t\rangle s'$.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ▲□ ◆ ○ ◆ ○ ◆

• $[s\rangle$: set of states reachable from s.

Persistency of an Its (S, \rightarrow, T, s_0)

Our results are about the cyclic structure of a persistent lts.

イロト イポト イヨト イヨト

= 900

They cover a general notion of conflict-freeness.

Asynchronous Circuits Design People like them.

Every Petri net can be simulated by

a persistent net plus two non-persistent transitions.

They cover a general notion of conflict-freeness.

Asynchronous Circuits Design People like them. Every Petri net can be simulated by a persistent net plus two non-persistent transitions

・ロト・日本・山下・山下・ 白・ うへつ

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ・ の Q ()

They cover a general notion of conflict-freeness. Asynchronous Circuits Design People like them.

Every Petri net can be simulated by a persistent net plus two non-persistent transitions.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

They cover a general notion of conflict-freeness.

Asynchronous Circuits Design People like them.

Every Petri net can be simulated by a persistent net plus two non-persistent transitions.

Marked graphs are persistent

Note: All simple cycles have the same Parikh vectors

Parikh vectors

Let $\sigma = t_1 \dots t_n \in T^*$ be a finite sequence of labels.

Its Parikh vector is $\Psi(\sigma) : \begin{cases} T \rightarrow \mathbb{N} \\ t \mapsto \text{number of times } t \text{ occurs in } \sigma. \end{cases}$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Example: $\Psi(t_3 t_1 t_3)(t_1) = 1$ $\Psi(t_3 t_1 t_3)(t_2) = 0$ $\Psi(t_3 t_1 t_3)(t_3) = 2$

Permutations

 Two activated sequences s[σ) and s[σ') arise from each other by a transposition if

$$\sigma = t_1 \dots t_k t t' \dots t_n$$
 and $\sigma' = t_1 \dots t_k t' t \dots t_n$.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ● ●

• Two activated sequences $s[\sigma\rangle$ and $s[\sigma'\rangle$ are permutations of each other (from *s*, written $\sigma \equiv_s \sigma'$) if they arise out of each other through a sequence of transpositions.

Simple cycles

• A cycle from s is a firable sequence that reproduces s:

 $\mathbf{s}[\sigma \rangle \mathbf{s}.$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ● ●

• A cycle $s[\sigma\rangle s$ is simple

if there is no permutation $\sigma \equiv_{s} \tau_{1}\tau_{2}$ with

- τ_1 and τ_2 are nontrivial: $\tau_1 \neq \varepsilon \neq \tau_2$
- $s[\tau_1\rangle s[\tau_2\rangle s.$

Example (non-simple vs. simple cycles)

- $M_0[btbata\rangle M_0$ is not a simple cycle because $btbata \equiv_{M_0} btabta$ and $M_0[bta\rangle M_0[bta\rangle M_0.$
- $M_0[bta\rangle M_0$ is a simple cycle.

ヘロト ヘ部ト ヘミト ヘヨト

э

A persistent net which is not a marked graph

b

а

A non-persistent net

С

Note: There are two simple cycles which do not have the same Parikh vectors and are not transition-disjoint

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Some properties of an Its (S, \rightarrow, T, s_0)

- finite if S and T are finite
- deterministic if $\forall s \in [s_0\rangle, t \in T \colon s[t\rangle s' \land s[t\rangle s'' \Rightarrow s' = s''$
- weakly periodic if for every $s_1 \in [s_0\rangle$, $\sigma \in T^*$, and

 $\mathbf{s}_1[\sigma \rangle \mathbf{s}_2[\sigma \rangle \mathbf{s}_3[\sigma \rangle \mathbf{s}_4[\sigma \rangle \dots,$

either $\forall i, j \ge 1$: $s_i = s_j$ or $\forall i, j \ge 1$: $i \neq j \Rightarrow s_i \neq s_j$

• cycle-consistent if for all $\sigma \in T^*$, $\exists s \in [s_0\rangle : s[\sigma\rangle s \text{ implies } \forall s', s'' \in S : s'[\sigma\rangle s'' \Rightarrow s' = s''$

Reachability graphs of Petri nets are always deterministic, weakly periodic and cycle-consistent.

Main decomposition theorem

Let (S, \rightarrow, T, s_0) be finite, deterministic, weakly periodic, cycle-consistent, and persistent.

```
There exists a reachable state \tilde{s}
and a finite set of label-disjoint simple cycles \tilde{s}[\rho_i\rangle\tilde{s}
```

such that:

for any reachable state *s* and for any cycle $s[\rho\rangle s$, $\Psi(\rho) = \sum k_i \Psi(\rho_i)$ for some $k_i \ge 0$.

Note: This statement is wrong in the previous example.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ▲□ ◆ ○ ◆ ○ ◆

Keller's theorem

For label sequences τ and σ ,

$$\tau \stackrel{\bullet}{=} \varepsilon = \tau$$

$$\tau \stackrel{\bullet}{=} t = \begin{cases} \tau, \text{ if there is no label } t \text{ in } \tau \\ \text{the sequence obtained by erasing the leftmost } t \text{ in } \tau, \text{ otherwise} \\ \tau \stackrel{\bullet}{=} (t\sigma) = (\tau \stackrel{\bullet}{=} t) \stackrel{\bullet}{=} \sigma.$$

Keller's theorem: if an Its is deterministic and persistent then

Permutation lemma

Lemma: Let an Its be deterministic and persistent. Let $s[\gamma\rangle$ and $s[\kappa\gamma\rangle$. Then $s[\gamma\kappa'\rangle$ with $\Psi(\kappa) = \Psi(\kappa')$ and $\kappa\gamma \equiv_s \gamma\kappa'$.

Proof: By Keller's Theorem, $s[\gamma\rangle$ and $s[\kappa\gamma\rangle$ entail $s[\gamma(\kappa\gamma \bullet \gamma)\rangle$. Put $\kappa' = \kappa\gamma \bullet \gamma$. Then $\Psi(\kappa\gamma \bullet \gamma) = \Psi(\kappa)$, hence $\Psi(\kappa\gamma) = \Psi(\gamma\kappa')$. $\kappa\gamma \equiv_s \gamma\kappa'$ follows since both sequences are activated at *s*.

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ・ うへつ

Existence of home states

Proposition: Let an Its be finite, deterministic and persistent. Then $\exists \tilde{s} \in S \forall s \in [s_0 \rangle : \tilde{s} \in [s \rangle$.

Proof: Let the set of reachable states be $\{s_0, \ldots, s_m\}$. Put $\tilde{s}_0 = s_0$. Select for each *i* from 1 up to *m* some state \tilde{s}_i reachable from \tilde{s}_{i-1} and s_i , which exists by Keller's theorem. Then put $\tilde{s} = \tilde{s}_m$.

・ロト ・ 日 ・ ・ ヨ ・ ・ 日 ・ う へ つ ・

Disjointness lemma

Lemma: Let an Its be finite, deterministic, weakly periodic, persistent. Let $s[\tau\rangle r$ and $s[\sigma\rangle r$ be two sequences with $s \neq r$. Then there is at least one label which occurs both in τ and in σ .

Proof: By contraposition, using Keller's Theorem. If τ and σ are label-disjoint, then $\tau \bullet \sigma = \tau$ and $\sigma \bullet \tau = \sigma$.

The West and East corners of Diamond 1 and of Diamond 2 are the same by determinacy. Thus: $s [\sigma \rangle r [\sigma \rangle q [\sigma \rangle \dots$ By weak periodicity and $s \neq r$, the set of reachable states is infinite. S S Diamond 1 T Diamond 1 T Diamond 1 T Diamond 2 T Di Diamond 2 T Diamond 2 T

・ ロ ト ・ 雪 ト ・ 目 ト ・ 日 ト

ъ

Lemma 1: about the uniqueness of simple cycles

Lemma 1: Let an Its be finite, deterministic, weakly periodic, cycle-consistent, and persistent. Let $s[a\tau\rangle s$ and $s[a\sigma\rangle s$ with simple $s[a\tau\rangle s$ and $s[a\sigma\rangle s$. Then $a\tau \equiv_s a\sigma$.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ▲□ ◆ ○ ◆ ○ ◆

Proof outline of Lemma 1

- Using Keller's Theorem, $\tau \bullet \sigma = \varepsilon$ implies $\sigma \bullet \tau = \varepsilon$.
- By symmetry, there are two separate cases.
- **Case 1:** $\tau \bullet \sigma = \varepsilon = \sigma \bullet \tau$. Then $\Psi(\tau) = \Psi(\sigma)$, implying $\Psi(a\tau) = \Psi(a\sigma)$. Then also $a\tau \equiv_s a\sigma$.
- Case 2: $\tau \bullet \sigma \neq \varepsilon \neq \sigma \bullet \tau$. Then
 - The sequences σ[•]−τ and τ[•]−σ are both activated at *s*, and when executed from *s*, they lead to the same state, say to s̃.
 s̃ ≠ s.

By finiteness and the disjointness lemma, $\sigma - \tau$ and $\tau - \sigma$ have some label in common; contradiction.

Reversibility

It would be nice to extend Lemma 1 in the following way:

If two simple cycles $s_1[\tau \rangle s_1$ and $s_2[\sigma \rangle s_2$ have a label in common, then they are Parikh-equivalent.

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ・ うへつ

However, this is true only for reversible Its.

An Its with initial state s_0 is called reversible if $\forall s \in [s_0 \rangle : s_0 \in [s \rangle$.

Before firing *c*, $M_0[a_1b_1b_2a_2a_3b_3b_4a_4\rangle M_0$ is a simple cycle.

After firing $M_0[c\rangle M$, $M[a_1a_2a_3a_4\rangle M$ and $M[b_1b_2b_3b_4\rangle M$ are simple cycles.

Hypersimple cycles

A cycle $s[\rho\rangle s$ is hypersimple if $\Psi(\rho)$ differs from $\Psi(\rho_1) + \Psi(\rho_2)$ for any two non-trivial cycles $s_1[\rho_1\rangle s_1$ and $s_2[\rho_2\rangle s_2$ from reachable markings s_1 and s_2 .

In the previous example,

• $M[a1 a2 a3 a4\rangle M$ and $M[b1 b2 b3 b4\rangle M$ are hypersimple.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ▲□ ◆ ○ ◆ ○ ◆

*M*₀[*a*1 *b*1 *b*2 *a*2 *a*3 *b*3 *b*4 *a*4)*M*₀ is simple but not hypersimple.

At a home state, every simple cycle is hypersimple

Lemma: Let an Its be finite, deterministic, weakly periodic, cycle-consistent, and persistent. Let $\tilde{s} \in [s_0\rangle$ be a home state. Then every simple cycle $\tilde{s}[\rho\rangle\tilde{s}$ is hypersimple.

Proof: Suppose $\Psi(\rho) = \Psi(\rho_1) + \Psi(\rho_2)$ for nontrivial cycles $s_1[\rho_1\rangle s_1$ and $s_2[\rho_2\rangle s_2$ from reachable states s_1 and s_2 . Because \tilde{s} is a home state, $s_1[\chi]\tilde{s}$ for some label sequence χ . By the permutation lemma applied in s_1 with $\kappa = \rho_1$ and $\gamma = \chi$, $\Psi(\rho_1) = \Psi(\rho'_1)$ for some cycle $\tilde{s}[\rho'_1\rangle \tilde{s}$. By the definition of \bullet , $\rho'_1 \bullet \rho = \varepsilon$ since $\Psi(\rho'_1) \le \Psi(\rho)$. By Keller's Theorem, applied to $\tilde{s}[\rho] \tilde{s}$ and $\tilde{s}[\rho'_1] \tilde{s}$, $\tilde{s}[\rho'_1 \bullet \rho] s$ and $\widetilde{s}[\rho \bullet \rho'_1 \rangle s$ for some state s, with $\rho(\rho'_1 \bullet \rho) \equiv_{\widetilde{s}} \rho'_1(\rho \bullet \rho'_1)$. As $\rho'_1 \bullet \rho = \varepsilon$, $\tilde{s} = s$ and $\Psi(\rho) = \Psi(\rho'_1) + \Psi(\rho \bullet \rho'_1)$. Recalling that $\Psi(\rho) = \Psi(\rho_1) + \Psi(\rho_2)$, both $\Psi(\rho'_1) = \Psi(\rho_1)$ and $\Psi(\rho \bullet \rho'_1) = \Psi(\rho_2)$ differ from the null vector. Now $\tilde{s}[\rho'_{4}\rangle \tilde{s}[\rho \bullet \rho'_{4}\rangle \tilde{s}$, and therefore $\tilde{s}[\rho\rangle \tilde{s}$ is not a simple cycle.

Lemma 2: adapting Lemma 1

Lemma 2: Let an Its be finite, deterministic, weakly periodic, cycle-consistent, and persistent.

Let s, s' be reachable states and $s[\tau \rangle s$ and $s'[\sigma \rangle s'$ be two hypersimple cycles.

If some label *a* occurs in both cycles, then $\Psi(\tau) = \Psi(\sigma)$.

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ・ うへつ

Proof of Lemma 2 (part 1 of 2)

By Keller's Theorem, there exist a state s'' and two label sequences ξ and χ such that $s[\xi\rangle s''$ and $s'[\chi\rangle s''$. By the permutation lemma applied in s with $\gamma = \xi$ and $\kappa = \tau$, there exists a label sequence τ' such that $s''[\tau'\rangle s''$ and $\Psi(\tau) = \Psi(\tau').$ By the permutation lemma applied in s' with $\gamma = \chi$ and $\kappa = \sigma$, there exists a label sequence σ' such that $s''[\sigma'\rangle s''$ and $\Psi(\sigma) = \Psi(\sigma').$ Let $\tau' = \tau'_1 t \tau'_2$ and $\sigma' = \sigma'_1 t \sigma'_2$ such that *t* occurs neither in τ'_1 nor in σ'_1 , and let r and r' be the two states such that $s''[\tau'_1\rangle r$ and $s''[\sigma'_1\rangle r'$, respectively. By Keller's Theorem, applied to $s''[\tau_1'\rangle r$ and $s''[\sigma_1'\rangle r'$, there

exists a state r'' such that $r[\sigma'_1 \bullet \tau'_1 \rangle r''$ and $r'[\tau'_1 \bullet \sigma'_1 \rangle r''$.

Proof of Lemma 2 (part 2 of 2)

By the permutation lemma applied in *r* with $\gamma = \sigma'_1 \bullet \tau'_1$ and $\kappa = t\tau'_2\tau'_1$, there exists a label sequence τ'' such that $r''[\tau''\rangle r''$ and $\Psi(\tau'') = \Psi(t\tau'_2\tau'_1) = \Psi(\tau)$. Similarly, there exists a label sequence σ'' such that $r''[\sigma''\rangle r''$ and $\Psi(\sigma'') = \Psi(t\sigma'_2\sigma'_1) = \Psi(\sigma)$. Now $r[t\rangle$, $r[\sigma_1^{\bullet} - \tau_1^{\bullet})r''$, and label t does not occur in $\sigma_1^{\bullet} - \tau_1^{\bullet}$ since it does not occur in σ'_1 . By persistency, $r''[t\rangle \tilde{r}$ for some state \tilde{r} . As $\Psi(t) < \Psi(\tau'') = \Psi(\tau), t - \tau'' = \varepsilon$. By Keller's Theorem, applied to $r''[\tau''\rangle r''$ and $r''[t\rangle \tilde{r}, \tilde{r}[\tau''\bullet t\rangle r''$. As the Parikh vector of $r''[t)\tilde{r}[\tau'' \bullet t\rangle r''$ is equal to $\Psi(\tau'') = \Psi(\tau)$, this cycle is hypersimple.

Similarly, one can construct a hypersimple cycle $r''[t\rangle \tilde{r}[\sigma'' \bullet t\rangle r''$. As every hypersimple cycle is simple and both cycles start with t from r'', Lemma 1 applies, entailing $t(\tau'' \bullet t) \equiv_{s''} t(\sigma'' \bullet t)$ and hence $\Psi(\tau) = \Psi(\tau'') = \Psi(\sigma'') = \Psi(\sigma)$.

Putting the pieces together

Let an Its be finite, deterministic, weakly periodic, cycle-consistent, and persistent.

```
There exists a reachable state \tilde{s}
and a finite set of label-disjoint simple cycles \tilde{s}[\rho_i\rangle \tilde{s}
```

such that:

for any reachable state *s* and for any cycle $s[\rho\rangle s$, $\Psi(\rho) = \sum k_i \Psi(\rho_i)$ for some $k_i \ge 0$.

Roadmap of the proof: Choose some home state \tilde{s} . Push $s[\rho\rangle s$ to a Parikh-equivalent cycle $\tilde{s}[\rho'\rangle \tilde{s}$. Permute and decompose $\tilde{s}[\rho'\rangle \tilde{s}$ into a sequence of simple cycles through \tilde{s} . Any simple cycle $\tilde{s}[\rho\rangle \tilde{s}$ is hypersimple. By Lemma 2, two simple cycles through \tilde{s} are either

transition-disjoint or Parikh equivalent.

The special case of reversible Petri nets

For reversible, bounded and persistent nets

- the notions of simplicity and hypersimplicity coincide
- and every reachable marking is a home marking.

Decomposition corollary:

Let N be reversible, bounded, and persistent.

There is a finite set \mathcal{B} of semipositive T-invariants such that any two of them are transition-disjoint and every cycle $M[\rho\rangle M$ in the reachability graph decomposes up to permutations to some sequence of cycles $M[\rho_1\rangle M[\rho_2\rangle M \dots [\rho_n\rangle M$ with all Parikh vectors $\Psi(\rho_i)$ in \mathcal{B} .

Difference to the decomposition theorem: $M[\rho\rangle M$ can be decomposed already at M.

A consequence of the decomposition corollary

Every bounded, persistent and reversible Petri net *N* whose unique minimal integral basis \mathcal{B} satisfies $|\mathcal{B}| = n$ can be viewed (up to reachability graph isomorphism) as the \oplus of *n* bounded, persistent and reversible Petri nets N_i whose unique minimal integral bases \mathcal{B}_i satisfy $|\mathcal{B}_i| = 1$.

・ロト ・ 日 ・ ・ ヨ ・ ・ 日 ・ う へ つ ・

(Not an immediate corollary.)

The special case of marked graphs

 If there is some nontrivial cycle in the reachability graph of a weakly connected marked graph, then it is automatically reversible.

Hence we have a unique basis $\ensuremath{\mathcal{B}}$ as in the decomposition corollary.

The vector assigning the number 1 to every transition is the only member of B.
 Thus, all Parikh vectors of cycles are multiples of (1,...,1)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

(recovering a well-known result).

The interest in this research may lie...

- ...in the proofs of Lemmas 1 and 2, both of which are non-trivial applications of Keller's fundamental theorem...
- ...in that it describes a rather nice property of the class of transition systems in question, which may have several other consequences that still need to be looked at...

◆□▶ ◆□▶ ◆□▶ ◆□▶ ▲□ ◆ ○ ◆ ○ ◆

• ...such as, perhaps, separability.

The interest in this research may lie...

- ...in the proofs of Lemmas 1 and 2, both of which are non-trivial applications of Keller's fundamental theorem...
- ...in that it describes a rather nice property of the class of transition systems in question, which may have several other consequences that still need to be looked at...

◆□▶ ◆□▶ ◆□▶ ◆□▶ ▲□ ◆ ○ ◆ ○ ◆

...such as, perhaps, separability.

The interest in this research may lie...

- ...in the proofs of Lemmas 1 and 2, both of which are non-trivial applications of Keller's fundamental theorem...
- ...in that it describes a rather nice property of the class of transition systems in question, which may have several other consequences that still need to be looked at...

◆□▶ ◆□▶ ◆□▶ ◆□▶ ▲□ ◆ ○ ◆ ○ ◆

• ...such as, perhaps, separability.

Separability

Origin and application: Workflow verification [van Hee et al.]

Let $k \in \{1, 2, 3, ...\}$ be a number. Let M_0 be an initial marking of a net N such that every place has a multiple of k tokens (0 or k or 2k or ...). (N, M_0) is called *k*-separable if, for every firable sequence $M_0[\sigma\rangle$, there are $\sigma_1, ..., \sigma_k$ such that

$$\forall j, 1 \leq j \leq k : \ (\frac{1}{k} \cdot M_0)[\sigma_j\rangle \text{ and } Parikh(\sigma) = \sum_{j=1}^k Parikh(\sigma_j).$$

The vector $Parikh(\sigma)$, for a sequence σ of transitions, counts the number of each transition in σ .

Theorem: Marked graphs are separable.

They can thus be viewed as independent copies (direct sums) of k safe marked graphs \rightsquigarrow reduced state space.

k = 2, separable

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三里・のへで

k = 2, a separation

◆□ > ◆□ > ◆三 > ◆三 > ・三 の < @

k = 2, not separable

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○□ ● ●

k = 2, no separation possible

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三三 のへで

Open question

◆□▶ ◆□▶ ◆□▶ ◆□▶ ▲□ ◆ ○ ◆ ○ ◆

Are

bounded, reversible and persistent Petri nets separable or not?

As a consequence of the consequence of the decomposition corollary, we need only consider the case that there is a single minimal realisable T-invariant.