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Labelled transition systems with initial state

(S,→, T , s0) where
S are states
T are labels
→ ⊆ (S × T × S) are the set of arcs
s0 ∈ S is an initial state.
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S = {s0, s1, s2, s3}
T = {a, b, c, d}
→ = {(s0, a, s1), (s1, c, s0),

(s0, b, s2), (s2, d , s0),
(s1, b, s3), (s3, d , s1),
(s2, a, s3), (s3, c, s2)}
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Reachability notation

• s[t〉 if ∃s′ ∈ S : (s, t , s′) ∈→
t is enabled (activated, firable) in state s.

• s[t〉s′ if (s, t , s′) ∈→.

• Reachability:

• s[ε〉 and s[ε〉s are always true

• s[σt〉 iff there is some s′′ with s[σ〉s′′ and s′′[t〉
s[σt〉s′ iff there is some s′′ with s[σ〉s′′ and s′′[t〉s′.

• [s〉: set of states reachable from s.
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Persistency of an lts (S,→, T , s0)

Persistency:

s
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implies ∃r :

s

r

t u

u t

Our results are about the cyclic structure of a persistent lts.
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Why are persistent systems interesting?

They cover a general notion of conflict-freeness.

Asynchronous Circuits Design People like them.

Every Petri net can be simulated by
a persistent net plus two non-persistent transitions.
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Marked graphs are persistent

a bt

Note:
All simple cycles
have the same
Parikh vectors
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Parikh vectors

Let σ = t1 . . . tn ∈ T ∗ be a finite sequence of labels.

Its Parikh vector is Ψ(σ) :

{
T → N

t �→ number of times t occurs in σ.

Example: Ψ(t3t1t3)(t1) = 1
Ψ(t3t1t3)(t2) = 0
Ψ(t3t1t3)(t3) = 2
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Permutations

• Two activated sequences s[σ〉 and s[σ ′〉 arise from each
other by a transposition if

σ = t1 . . . tk t t ′ . . . tn and σ′ = t1 . . . tk t ′t . . . tn.

• Two activated sequences s[σ〉 and s[σ ′〉 are
permutations of each other (from s, written σ ≡s σ′) if
they arise out of each other through a sequence of
transpositions.
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Simple cycles

• A cycle from s is a firable sequence that reproduces s:

s[σ〉s.

• A cycle s[σ〉s is simple

if there is no permutation σ ≡s τ1τ2 with
• τ1 and τ2 are nontrivial: τ1 �= ε �= τ2

• s[τ1〉s[τ2〉s.
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Example (non-simple vs. simple cycles)

• M0[btbata〉M0 is not a simple cycle

because btbata ≡M0
btabta

and M0[bta〉M0[bta〉M0.

• M0[bta〉M0 is a simple cycle.
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A persistent net which is not a marked graph
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Note: All simple cycles
have the same Parikh vectors
or are transition-disjoint
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A non-persistent net

a b c

Note: There are two simple cycles which
do not have the same Parikh vectors
and are not transition-disjoint

M0

a b c
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Some properties of an lts (S,→, T , s0)

• finite if S and T are finite

• deterministic if ∀s ∈ [s0〉, t ∈ T : s[t〉s′ ∧ s[t〉s′′ ⇒ s′ = s′′

• weakly periodic if for every s1 ∈ [s0〉, σ ∈ T ∗, and

s1[σ〉s2[σ〉s3[σ〉s4[σ〉 . . . ,

either ∀i , j ≥ 1 : si = sj or ∀i , j ≥ 1 : i �= j ⇒ si �= sj

• cycle-consistent if for all σ ∈ T ∗,
∃s ∈ [s0〉 : s[σ〉s implies ∀s′, s′′ ∈ S : s′[σ〉s′′ ⇒ s′ = s′′

Reachability graphs of Petri nets are always
deterministic, weakly periodic and cycle-consistent.
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Main decomposition theorem

Let (S,→, T , s0) be finite, deterministic,
weakly periodic, cycle-consistent, and persistent.

There exists a reachable state s̃
and a finite set of label-disjoint simple cycles s̃[ρi〉s̃

such that:

for any reachable state s and for any cycle s[ρ〉s,
Ψ(ρ) =

∑
kiΨ(ρi) for some ki ≥ 0.

Note: This statement is wrong in the previous example.
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Keller’s theorem

For label sequences τ and σ,

τ−• ε = τ

τ−• t =

{
τ , if there is no label t in τ

the sequence obtained by erasing the leftmost t in τ , otherwise

τ−• (tσ) = (τ−• t)−• σ.

Keller’s theorem: if an lts is deterministic and persistent then

s

τ σ

implies

s

τ σ

σ−• τ τ−• σ
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Permutation lemma

Lemma: Let an lts be deterministic and persistent.
Let s[γ〉 and s[κγ〉.
Then s[γκ′〉 with Ψ(κ) = Ψ(κ′) and κγ ≡s γκ′.

Proof: By Keller’s Theorem, s[γ〉 and s[κγ〉 entail s[γ(κγ−• γ)〉.
Put κ′ = κγ−• γ.
Then Ψ(κγ−• γ) = Ψ(κ), hence Ψ(κγ) = Ψ(γκ′).
κγ ≡s γκ′ follows since both sequences are activated at s.
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Existence of home states

Proposition: Let an lts be finite, deterministic and persistent.
Then ∃s̃ ∈ S ∀s ∈ [s0〉 : s̃ ∈ [s〉.
Proof: Let the set of reachable states be {s0, . . . , sm}.
Put s̃0 = s0.
Select for each i from 1 up to m some state s̃i reachable from
s̃i−1 and si , which exists by Keller’s theorem.
Then put s̃ = s̃m.
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Disjointness lemma
Lemma: Let an lts be finite, deterministic, weakly periodic,
persistent. Let s[τ〉r and s[σ〉r be two sequences with s �= r .
Then there is at least one label which occurs both in τ and in σ.

Proof: By contraposition, using Keller’s Theorem.
If τ and σ are label-disjoint, then τ−• σ = τ and σ−• τ = σ.

The West and East corners
of Diamond 1 and of
Diamond 2 are the same
by determinacy.
Thus: s [σ〉 r [σ〉q [σ〉 . . .
By weak periodicity
and s �= r ,
the set of reachable states
is infinite.

Diamond 1

Diamond 2
. . .

s

r
r

q
q

τ σ

σ τ σ
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Lemma 1: about the uniqueness of simple cycles

s

s′

aτ σ

Lemma 1: Let an lts be finite, deterministic, weakly periodic,
cycle-consistent, and persistent.
Let s[a τ〉s and s[a σ〉s with simple s[a τ〉s and s[a σ〉s.

Then a τ ≡s a σ.
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Proof outline of Lemma 1
s

s′
aτ σ

• Using Keller’s Theorem, τ−• σ = ε implies σ−• τ = ε.

• By symmetry, there are two separate cases.

• Case 1: τ−• σ = ε = σ−• τ .
Then Ψ(τ) = Ψ(σ), implying Ψ(aτ) = Ψ(aσ).
Then also a τ ≡s a σ.

• Case 2: τ−• σ �= ε �= σ−• τ . Then
1. The sequences σ−• τ and τ−• σ are both activated at s, and

when executed from s, they lead to the same state, say to s̃.
2. s̃ �= s.

By finiteness and the disjointness lemma, σ−• τ and τ−• σ
have some label in common; contradiction.
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Reversibility

It would be nice to extend Lemma 1 in the following way:

If two simple cycles s1[τ〉s1 and s2[σ〉s2 have a label in
common, then they are Parikh-equivalent.

However, this is true only for reversible lts.

An lts with initial state s0 is called reversible if
∀s ∈ [s0〉 : s0 ∈ [s〉.
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An non-reversible persistent net

p1 p2 p3 p4

a1 a2 a3 a4

b1 b2 b3 b4

c

Before firing c, M0[a1b1b2a2a3b3b4a4〉M0 is a simple cycle.

After firing M0[c〉M,
M[a1a2a3a4〉M and M[b1b2b3b4〉M are simple cycles.
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Hypersimple cycles

A cycle s[ρ〉s is hypersimple if Ψ(ρ) differs from Ψ(ρ1) + Ψ(ρ2)
for any two non-trivial cycles s1[ρ1〉s1 and s2[ρ2〉s2

from reachable markings s1 and s2.

In the previous example,

• M[a1 a2 a3 a4〉M and M[b1 b2 b3 b4〉M are hypersimple.

• M0[a1 b1 b2 a2 a3 b3 b4 a4〉M0 is simple but not
hypersimple.
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At a home state, every simple cycle is hypersimple

Lemma: Let an lts be finite, deterministic, weakly periodic,
cycle-consistent, and persistent. Let s̃ ∈ [s0〉 be a home state.
Then every simple cycle s̃[ρ〉s̃ is hypersimple.

Proof: Suppose Ψ(ρ) = Ψ(ρ1) + Ψ(ρ2) for nontrivial cycles
s1[ρ1〉s1 and s2[ρ2〉s2 from reachable states s1 and s2.
Because s̃ is a home state, s1[χ〉s̃ for some label sequence χ.
By the permutation lemma applied in s1 with κ = ρ1 and γ = χ,
Ψ(ρ1) = Ψ(ρ′1) for some cycle s̃[ρ′1〉s̃.
By the definition of −• , ρ′1−• ρ = ε since Ψ(ρ′1) ≤ Ψ(ρ).
By Keller’s Theorem, applied to s̃[ρ〉s̃ and s̃[ρ′1〉s̃, s̃[ρ′1−• ρ〉s and
s̃[ρ−• ρ′1〉s for some state s, with ρ(ρ′1−• ρ) ≡es ρ′1(ρ−• ρ′1).
As ρ′1−• ρ = ε, s̃ = s and Ψ(ρ) = Ψ(ρ′1) + Ψ(ρ−• ρ′1).
Recalling that Ψ(ρ) = Ψ(ρ1) + Ψ(ρ2), both Ψ(ρ′1) = Ψ(ρ1) and
Ψ(ρ−• ρ′1) = Ψ(ρ2) differ from the null vector.
Now s̃[ρ′1〉s̃[ρ−• ρ′1〉s̃, and therefore s̃[ρ〉s̃ is not a simple cycle.
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Lemma 2: adapting Lemma 1

Lemma 2: Let an lts be finite, deterministic, weakly periodic,
cycle-consistent, and persistent.

Let s, s′ be reachable states
and s[τ〉s and s′[σ〉s′ be two hypersimple cycles.

If some label a occurs in both cycles, then Ψ(τ) = Ψ(σ).
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Proof of Lemma 2 (part 1 of 2)

By Keller’s Theorem, there exist a state s′′ and two label
sequences ξ and χ such that s[ξ〉s′′ and s′[χ〉s′′.
By the permutation lemma applied in s with γ = ξ and κ = τ ,
there exists a label sequence τ ′ such that s′′[τ ′〉s′′ and
Ψ(τ) = Ψ(τ ′).
By the permutation lemma applied in s ′ with γ = χ and κ = σ,
there exists a label sequence σ′ such that s′′[σ′〉s′′ and
Ψ(σ) = Ψ(σ′).
Let τ ′ = τ ′

1tτ ′
2 and σ′ = σ′

1tσ′
2 such that t occurs neither in τ ′

1
nor in σ′

1, and let r and r ′ be the two states such that s′′[τ ′
1〉r

and s′′[σ′
1〉r ′, respectively.

By Keller’s Theorem, applied to s ′′[τ ′
1〉r and s′′[σ′

1〉r ′, there
exists a state r ′′ such that r [σ′

1−• τ ′
1〉r ′′ and r ′[τ ′

1−• σ′
1〉r ′′.
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Proof of Lemma 2 (part 2 of 2)
By the permutation lemma applied in r with γ = σ ′

1−• τ ′
1 and

κ = tτ ′
2τ

′
1, there exists a label sequence τ ′′ such that r ′′[τ ′′〉r ′′

and Ψ(τ ′′) = Ψ(tτ ′
2τ

′
1) = Ψ(τ).

Similarly, there exists a label sequence σ′′ such that r ′′[σ′′〉r ′′
and Ψ(σ′′) = Ψ(tσ′

2σ
′
1) = Ψ(σ).

Now r [t〉, r [σ′
1−• τ ′

1〉r ′′, and label t does not occur in σ ′
1−• τ ′

1 since
it does not occur in σ′

1.
By persistency, r ′′[t 〉̃r for some state r̃ .
As Ψ(t) ≤ Ψ(τ ′′) = Ψ(τ), t−• τ ′′ = ε.
By Keller’s Theorem, applied to r ′′[τ ′′〉r ′′ and r ′′[t 〉̃r , r̃ [τ ′′−• t〉r ′′.
As the Parikh vector of r ′′[t 〉̃r [τ ′′−• t〉r ′′ is equal to Ψ(τ ′′) = Ψ(τ),
this cycle is hypersimple.
Similarly, one can construct a hypersimple cycle r ′′[t 〉̃r [σ′′−• t〉r ′′.
As every hypersimple cycle is simple and both cycles start with
t from r ′′, Lemma 1 applies, entailing t(τ ′′−• t) ≡s′′ t(σ′′−• t) and
hence Ψ(τ) = Ψ(τ ′′) = Ψ(σ′′) = Ψ(σ).
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Putting the pieces together

Let an lts be finite, deterministic, weakly periodic,
cycle-consistent, and persistent.

There exists a reachable state s̃
and a finite set of label-disjoint simple cycles s̃[ρi〉s̃

such that:

for any reachable state s and for any cycle s[ρ〉s,
Ψ(ρ) =

∑
kiΨ(ρi) for some ki ≥ 0.

Roadmap of the proof: Choose some home state s̃.
Push s[ρ〉s to a Parikh-equivalent cycle s̃[ρ′〉s̃.
Permute and decompose s̃[ρ′〉s̃ into a sequence of simple
cycles through s̃.
Any simple cycle s̃[ρ〉s̃ is hypersimple.
By Lemma 2, two simple cycles through s̃ are either
transition-disjoint or Parikh equivalent.
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The special case of reversible Petri nets

For reversible, bounded and persistent nets

• the notions of simplicity and hypersimplicity coincide

• and every reachable marking is a home marking.

Decomposition corollary:

Let N be reversible, bounded, and persistent.

There is a finite set B of semipositive T-invariants such that any
two of them are transition-disjoint and every cycle M[ρ〉M in the
reachability graph decomposes up to permutations to some
sequence of cycles M[ρ1〉M[ρ2〉M . . . [ρn〉M with all
Parikh vectors Ψ(ρi) in B.

Difference to the decomposition theorem:
M[ρ〉M can be decomposed already at M.



Séminaire MeFoSyLoMa – Paris – December 5, 2008

A consequence of the decomposition corollary

Every bounded, persistent and reversible Petri net N
whose unique minimal integral basis B satisfies |B| = n
can be viewed (up to reachability graph isomorphism)
as the ⊕ of n bounded, persistent and reversible Petri nets Ni

whose unique minimal integral bases B i satisfy |Bi | = 1.

(Not an immediate corollary.)
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The special case of marked graphs

• If there is some nontrivial cycle in the reachability graph of
a weakly connected marked graph, then it is automatically
reversible.
Hence we have a unique basis B as in the decomposition
corollary.

• The vector assigning the number 1 to every transition is the
only member of B.
Thus, all Parikh vectors of cycles are multiples of (1, . . . , 1)
(recovering a well-known result).
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The interest in this research may lie...

• ...in the proofs of Lemmas 1 and 2, both of which are
non-trivial applications of Keller’s fundamental theorem...

• ...in that it describes a rather nice property of the class of
transition systems in question, which may have several
other consequences that still need to be looked at...

• ...such as, perhaps, separability.
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Separability
Origin and application: Workflow verification [van Hee et al.]

Let k ∈ {1, 2, 3, . . .} be a number.
Let M0 be an initial marking of a net N such that every place
has a multiple of k tokens (0 or k or 2k or . . .).
(N, M0) is called k-separable if, for every firable sequence
M0[σ〉, there are σ1, . . . , σk such that

∀j , 1≤j≤k : (
1
k
·M0)[σj〉 and Parikh(σ) =

k∑
j=1

Parikh(σj).

The vector Parikh(σ), for a sequence σ of transitions, counts
the number of each transition in σ.

Theorem: Marked graphs are separable.
They can thus be viewed as independent copies (direct sums)
of k safe marked graphs� reduced state space.
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k = 2, separable

t1

t

t1 t t1 t
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k = 2, a separation

t1

t

t1 t t1 t
t1 t t1 t �
t1 t t1 t �
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k = 2, not separable

t1

t2

t

t1 t t2 t
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k = 2, no separation possible

t1

t2

t

t1 t t2 t
t1 t t2 t �
t1 t t2 t �
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Open question

Are

bounded, reversible and persistent Petri nets

separable or not?

As a consequence of the
consequence of the decomposition corollary,
we need only consider the case that there is
a single minimal realisable T-invariant.


