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Labelled transition systems with initial state

(S,—,T,sp) where

S are states

T are labels

— C (S x T x S) are the set of arcs
Sp € S is an initial state.

= {So,81,52,83}

= {a,b,c,d}

= {(s0,8,51),(s1,C, S0),
(So,b,Sz),(Sz,d,So),
(Sl,b,Sg),(Sg,d,Sl),
(s2,a,83),(S3,C,S2)}

] 4w
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Reachability notation

s[t) if 3s’ € S: (s,t,8') e—

t is enabled (activated, firable) in state s.
s[t)s’ if (s,t,s") e—.

Reachability:

s[e) and s[e)s are always true

s[ot) iff there is some s” with s[c)s” and s”|[t)
s[ot)s’ iff there is some s” with s[o)s” and s”[t)s’.

[s): set of states reachable from s.
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Persistency of an Its (S, —, T, So)

Persistency:

S

implies Jr:

Our results are about the cyclic structure of a persistent Iis.
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Why are persistent systems interesting?
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Why are persistent systems interesting?

They cover a general notion of conflict-freeness.
Asynchronous Circuits Design People like them.

Every Petri net can be simulated by
a persistent net plus two non-persistent transitions.
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Marked graphs are persistent

All
have the same
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Parikh vectors

Leto =t,...t, € T* be afinite sequence of labels.

Its isV(o): {
D W(tetats) () = 1
V(ttyt3)(t2) =0
V(tatytz)(tz) = 2

T — N

t

— number of times t occurs in o.
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Permutations

e Two activated sequences s[o) and s[c’) arise from each
other by a if

o=t ... 4tt'. ..ty and o =t ... tt't.. .ty

» Two activated sequences s[o) and s[o’) are
(from s, written o =5 o’) if
they arise out of each other through a sequence of
transpositions.
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Simple cycles

o A from s is a firable sequence that reproduces s:
s[o)s.

e Acycle s[o)s is
if there is no permutation o =5 717 with

71 and 7, are nontrivial: 71 e # 7,
s[r1)s[m2)s.
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Example (non-simple vs. simple cycles)

Mo

a
e Mo[btbata)My is not a simple cycle b[ t a

btbata =y, btabta a bt

Mo[bta>Mo[bta> Mp.

e Mg[bta)M is a simple cycle.
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A persistent net which is not a marked graph

. All simple cycles
have the same Parikh vectors
or are transition-disjoint
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A non-persistent net

: There are two simple cycles which
do not have the same Parikh vectors
and are not transition-disjoint
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Some properties of an Its (S, —, T, So)

° if Sand T are finite
. if Vs € [so),t € T: s[t)s’ As[t)s” =" =5"
o if for every s; € [sg), 0 € T*, and

s1[0)solo)ss[o)salo) .

eitherVi,j > 1:sj=sjorVvi,j > 1:i #] =5 #5;
° if forall o € T,
Js € [sp): s[o)s implies Vs';s” € S: §'[o)s” = s’ =¢§"

Reachability graphs of Petri nets are always
deterministic, weakly periodic and cycle-consistent.



Séminaire MeFoSyLoMa — Paris — December 5, 2008

Let (S,—,T,sp) be finite, ,
, and persistent.

There exists a reachable state s
and a finite set of simple cycles s[p;)s

such that;

for any reachable state s and for any cycle s[p)s,
V(p) => kiV(p;) for some k; > 0.

: This statement is wrong in the previous example.
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Keller's theorem

For label sequences  and o,

TEe =T

{ T, if there is no label t in 7
Tt =

the sequence obtained by erasing the leftmost t in 7, otherwise
T2(to) = (7*t)20.

. if an Its is deterministic and persistent then

S . o S
o ‘e implies L8 *
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Permutation lemma

: Let an Its be deterministic and persistent.
Let s[y) and s[x~).
Then s[yx') with W(k) = V(x') and ky =5 K.

: By Keller's Theorem, s[vy) and s[xv) entail s[y(ky27)).
Put &' = ky*7.
Then V(ky2~) = V(k), hence V(kvy) = V(vk').
Ky =s k' follows since both sequences are activated at s.
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Existence of home states

: Let an Its be finite, deterministic and persistent.
Then3s € SVs € [sg): S € [s).

: Let the set of reachable states be {sg,...,Sm}.
Put §0 = Sp.
Select for each i from 1 up to m some state s; reachable from
s;_1 and s;j, which exists by Keller's theorem.
Then put's = sp,.
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Disjointness lemma

: Let an Its be finite, deterministic, weakly periodic,
persistent. Let s[7)r and s[o)r be two sequences with s # r.

Then there is at least one label which occurs both in 7 and in o.

: By contraposition, using Keller’s Theorem.

If 7 and o are label-disjoint, then 720 = 7 and 27 = 0.

The West and East corners s
of Diamond 1 and of

Diamond 2 are the same r. o

by determinacy.

Thus:s[o)r[o)q[o) ... .~ Diamond 1
By weak periodicity o

ands #r, o T

the set of reachable states

is infinite. Diamond 2

q
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Lemma 1: about the uniqueness of simple cycles

: Let an Its be finite, deterministic, weakly periodic,
cycle-consistent, and persistent.
Let s[a7)s and s[ao)s with simple s[aT)s and s[ao)s.

Thenar =g ao.
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Proof outline of Lemma 1

0 i

e Using Keller's Theorem, 720 = ¢ implies 07 = .
e By symmetry, there are two separate cases.
e Casel: 720 =c=o0>T.
Then V(1) = V(o), implying ¥(ar) = V(ao).
Thenalsoar =5 ao.
e Case2: 720 #e¢# o27. Then
1. The sequences o*7 and 7*¢ are both activated at s, and
when executed from s, they lead to the same state, say to S.
2. S#s.
By finiteness and the disjointness lemma, ¢ 7 and 7*¢
have some label in common; contradiction.
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Reversibility

It would be nice to extend Lemma 1 in the following way:

If two simple cycles s;[r)s; and s,[o)s; have a label in
common, then they are Parikh-equivalent.

, this is true only for reversible lIts.

An Its with initial state sg is called if
Vs € [so): Sp € [S).



Séminaire MeFoSyLoMa — Paris — December 5, 2008

An non-reversible persistent net

firing ¢, Mg[a;b;boazazbsbsas) Mg is a simple cycle.

firing Mp[c)M,
M[a;azazas)M and M[bib,bsbs)M are simple cycles.
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Hypersimple cycles

A cycle s[p)s is if W(p) differs from W(py) + V(p2)
for any two non-trivial cycles si[p1)s1 and s;[p2)S2
from reachable markings s; and s».

In the previous example,
e M[ala2a3a4)M and M[b1b2b3b4)M are hypersimple.

e Mp[alblb2a2a3b3b4ad4)Mgis simple but not
hypersimple.
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At a home state, every simple cycle is hypersimple

: Let an Its be finite, deterministic, weakly periodic,
cycle-consistent, and persistent. Let s € [sp) be a home state.
Then every simple cycle s[p)s is hypersimple.

: Suppose V(p) = W(p1) + V(p2) for nontrivial cycles
S1[p1)s1 and sz[p2)s, from reachable states s; and s;.
Because s is a home state, s;[x)s for some label sequence y.
By the permutation lemma applied in s; with x = p; and v = ¥,
V(p1) = V(p}) for some cycle s[p})s.

By the definition of *, pj *p = ¢ since V(p]) < V(p).

By Keller's Theorem, applied to s[p)s and s[p})s, s[p]*p)s and
s[p=p})s for some state s, with p(p} *p) =5 p(p=p})-

As py*p=¢,s =sand V(p) = V(p}) + V(p*p}).

Recalling that W(p) = V(p1) + W(p2), both ¥(p|) = ¥(p;) and
V(p*p}) = V(p) differ from the null vector.

Now s[p})s[p=p})s, and therefore S[p)s is not a simple cycle.
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Lemma 2: adapting Lemma 1

. Let an Its be finite, deterministic, weakly periodic,
cycle-consistent, and persistent.

Let s, s’ be reachable states
and s[r)s and s’[o)s’ be two cycles.

If some label a occurs in both cycles, then V(1) = V(o).
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Proof of Lemma 2 (part 1 of 2)

By Keller's Theorem, there exist a state s” and two label
sequences ¢ and x such that s[¢)s” and s'[y)s”.

By the permutation lemma applied in s withy =& and k = 7,
there exists a label sequence 7’ such that s”[r')s” and

V(r) = V(7).

By the permutation lemma applied in s’ with v = x and x = o,
there exists a label sequence ¢’ such that s”[0’)s” and

V(o) = V(o).

Let 7’ = 7t} and ¢’ = o]to), such that t occurs neither in 7]
norin o7, and letr and r’ be the two states such that s”[r;)r
and s”[o7)r’, respectively.

By Keller's Theorem, applied to s”[r])r and s”[¢7)r’, there
exists a state r” such that r[o] *71)r"” and r'[r] *o)r".
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Proof of Lemma 2 (part 2 of 2)

By the permutation lemma applied in r with v = ¢} 7] and

k = t7,7;, there exists a label sequence 7" such that r”[7")r"
and V(7") = V(tryy) = V(7).

Similarly, there exists a label sequence ¢” such that r”[o”)r”
and V(o) = VU(toho) = V(o).

Now rt), r[o} =77)r”, and label t does not occur in o} *7; since
it does not occur in .

By persistency, r”[t)r for some state r.

AsV(t) < V(") =V(r), t27" ==

By Keller's Theorem, applied to r”[7”)r” and r”[t)r, r[7"=t)r".
As the Parikh vector of r”[t)r[r”2t)r” is equal to W(7") = V(7),
this cycle is hypersimple.

Similarly, one can construct a hypersimple cycle r”[t)r[o” =t)r".
As every hypersimple cycle is simple and both cycles start with
t from r”, Lemma 1 applies, entailing t(7"”*t) =s» t(¢”*t) and
hence V(1) = V(") = W(o") = V(o).
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Putting the pieces together

Let an Its be finite, deterministic, weakly periodic,
cycle-consistent, and persistent.

There exists a reachable state s
and a finite set of simple cycles s[p;)s

for any reachable state s and for any cycle s[p)s,
V(p) => kiW(p;) for some k; > 0.

: Choose some home state s.
Push s[p)s to a Parikh-equivalent cycle s[y’)s.
Permute and decompose s[y’)s into a sequence of simple
cycles through s.
Any simple cycle s[p)s is hypersimple.
By Lemma 2, two simple cycles through s are either
transition-disjoint or Parikh equivalent.
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The special case of reversible Petri nets

For reversible, bounded and persistent nets
¢ the notions of simplicity and hypersimplicity coincide
¢ and every reachable marking is a home marking.

Let N be reversible, bounded, and persistent.

There is a finite set B of semipositive T-invariants such that any
two of them are transition-disjoint and every cycle M[p)M in the
reachability graph decomposes up to permutations to some
sequence of cycles M[p1)M[p2)M ... [pn)M with all

Parikh vectors W(p;) in B.

Difference to the decomposition theorem:
M[p)M can be decomposed already at M.
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A consequence of the

Every bounded, persistent and reversible Petri net N

whose unique minimal integral basis B satisfies |B| = n

can be viewed (up to reachability graph isomorphism)

as the @ of n bounded, persistent and reversible Petri nets N;
whose unique minimal integral bases B; satisfy |5;| = 1.

(Not an immediate corollary.)
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The special case of marked graphs

¢ If there is some nontrivial cycle in the reachability graph of
a weakly connected marked graph, then it is automatically
reversible.
Hence we have a unique basis 5 as in the decomposition
corollary.

e The vector assigning the number 1 to every transition is the
only member of B.
Thus, all Parikh vectors of cycles are multiples of (1,...,1)
(recovering a well-known result).
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The interest in this research may lie...

e ...in the proofs of Lemmas 1 and 2, both of which are
non-trivial applications of Keller’'s fundamental theorem...
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The interest in this research may lie...

e ...in the proofs of , both of which are
non-trivial applications of Keller’'s fundamental theorem...

e ...in that it describes a rather nice property of the class of
transition systems in question, which may have several
other consequences that still need to be looked at...

e ...such as, perhaps, separability.



Séminaire MeFoSyLoMa — Paris — December 5, 2008

Separability

Workflow verification [van Hee et al.]

Letk € {1,2,3,...} be a number.

Let Mg be an initial marking of a net N such that every place
has a multiple of k tokens (0 or k or 2k or...).

(N, Mp) is called k-separable if, for every firable sequence
Mo[o), there are o1, ..., 0k such that

k
vj, 1<j<k: (%-Mo)[aj> and Parikh(c) = Parikh(o).
j=1

The vector Parikh(c), for a sequence o of transitions, counts
the number of each transition in o.

Marked graphs are separable.
They can thus be viewed as independent copies (direct sums)
of k safe marked graphs ~~ reduced state space.
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= 2, separable
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k = 2, a separation
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@
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= 2, not separable
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k = 2, no separation possible
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Open question

bounded, reversible and persistent Petri nets

As a consequence of the
we need only consider the case that there is
a single minimal realisable T-invariant.



