Reasoning about sequences of memory states

Stéphane Demri

LSV, ENS Cachan, CNRS, INRIA Saclay
Joint work with Rémi Brochenin and Etienne Lozes

November 14th, 2008 — Séminaire MeFoSyLoMa

Pointer programs

» Pointer: reference to a memory cell
(non fixed memory address).

» Dynamic memory allocation/deallocation.

» Examples of instructions:
» x =7y : assign the value y to the variable x,

x =y — | : read the /-field of the cell pointed to by y into x,
y — | := x: write x to the /-field of the cell pointed to by y,
free x: deallocate the cell pointer to by x,
x :=malloc(/): allocate i memory cells and assign its address
to x.
» Simple safety properties of pointer programs are undecidable

(“there is no null dereference").

vV YyyVvyy

2

Memory states

F|

i
LT T

Memory states

Set of variables Var.
Set of labels Lab.
Set of values Val = N {nil}.

X [—‘y
g E LE v Pl E "** » Set of stores: S = Var — Val.

v

v

v

v

v

Set of heaps:

def

= H = N—y4, (Lab —fint Val).
Memory state: (s, h).

v

Disjoint heaps
» hy and hy are disjoint whenever dom(h;) N dom(hy) = 0.
Notation: hy L ho.
» Disjointness does not concern records.

» Disjoint union hy x hy whenever h; L hs.

Disjoint heaps
» hy and hy are disjoint whenever dom(h;) N dom(hy) = 0.
Notation: h; L hs.
» Disjointness does not concern records.
» Disjoint union hy x hy whenever h; L hs.

» Disjoint heaps (with a unique label):

Ca vl

Analysis of pointer programs

» Memory leak: a memory cell can no longer be reached.

» Null-pointer dereferencing.

» Alias analysis: checking whether memory cells are shared.
» Shape analysis: checking the structure of the heap.

» Functional properties: compare input and output heaps, data
properties.

= Verification of program with pointers requires fine-tuned
specification languages to speak about memory states and their

evolution.
7

Reasoning about pointer programs

>

>

Separation logic [Reynolds, LICS 02].

Pointer assertion logic (PAL) [Jensen et al. 97].
Monadic 2nd logic whose the universe of discourse contains
records, pointers and booleans (non-elementary complexity)

TVLA [Lev-Ami & Sagiv, SAS 00]: abstract interpretation
technique with Kleene's logic (op. semantics in FOL + TC)

Alias logic [Bozga & losif & Lakhnech, SAS 04].
Logic of Reachable Patterns [Yorsh et al., FOSSACS 06].

Evolution Logic [Yahav et al., ESOP 03]: to specify temporal
properties of programs with dynamically evolving heaps.

Q

Model checking

» Navigation Temporal Logic
[Distefano & Katoen & Rensink, FSTTCS 04].

» Bounded model-checking
[Charatonik & Georgieva & Maier, CSL 05].
Decidability for a fragment of FOL with Datalog programs.

» Model-checking pointer systems
[Bardin & Finkel & Nowak, AVIS 04; Bardin, PhD 05].

» Regular model-checking [Bouajjani et al., TACAS 05].

» Translation into counter automata
[Bouajjani et al, CAV 06; Sangnier, PhD 08].

0]

Our motivations

» To design temporal languages to specify the behaviors of
pointer programs.

» To combine an assertion language from separation logic with
linear-time/branching-time temporal logics.

» To evaluate the borders for decidability.

» To admit effective procedure with “reasonable” computational
complexity for precise analysis.

» Automata-based proof technique with symbolic memory
states.

10

Separation logic
» Introduced by Reynolds, Pym and O’Hearn.

» Reasoning about the heap with a strong form of locality
built-in.

» A x B is true whenever the heap can be divided into two
disjoint parts, one satisfies A, the other one B.

» A—B is true whenever A is true for a (fresh) disjoint heap, B
is true for the combined heap.

» Hoare-style proof system for local reasoning about pointer
programs, e.g. frame rule:

{A} PROG {B}
{Ax B’}1113RDG {BxB'}

Hoare triples
» Hoare triple: {.A} PROG {B}.

» Total correctness: if we start in a state where A holds true
and execute PROG, the program PROG will terminate in a state
satisfying B.

» Hoare logic uses Hoare triples to reason about program
correctness.

» Rule of constancy:
{A} PROG {B}
{AAB'} PROG {BAB'}

where no variable free in B’ is modified by PROG.

12

When separation logic enters into the play

» Unsoundness of the rule of constancy in separation logic:

{3z. x—2)} [x] =4 {x— 4}
{Bz.x—2z)Ay—3} [x] =4 {x— 4Ny +— 3}

(when x =y)

» Reparation with frame rule:

{A} PROG {B}
{A* B’} PROG {B * B'}

where no variable free in B’ is modified by PROG.

13

Standard inference rules for mutation

» Local form (MUL)

{3z. x—2)} [x] =y {x— v}

» Global form (MUG)
{(Fz. x—2z)x ¢} [x] =y {x—y=* A}

» Backward-reasoning form (MUBR)
{(3z. x— 2) * ((x— y)= A)} [x] ==y {A}

14

Separation Logics (SL)

» Expressions
e =x | null

» Atomic formulae
/ .
Ti=e=¢€| x+i—e
/ " . 1 / 2 "
» Standard e <— €', €" can be encoded with e — &' AN e — ¢e".
» i = 0 for no arithmetics on pointers.

» State formulae
Av=emp | 7| ANB| -A| AxB| A~=B

15

Semantics

> (s, h) g1, emp iff dom(h) = 0.

> (s,h) Espe=¢€iff[e]s=]¢€]s, with [x |s = s(x) and
[null Js = nil.

> (s,h) EsLx+i<s e iff [x]s € Nand [x] + i € dom(h)
and h(s(x) +i)(/)=1[¢€]s.

> (s, h) st Ax x Ay iff 3 hy, hy such that h = hy * hy,
(S, hl)):SL .,41 and (S, hz)):SL Az.

> (s, h) s Ai1—Ay iff for all /', if h L i and (s, h') Eg1 Az
then (s, h* h') [=sL A».

» + clauses for Boolean operators.

16

Memory states with arithmetic and records

=
EfEICNEE
—

— ==

i

X+1<i>y

/
y—null

Memory states with arithmetic and records

SEEEE

X+’1_’>Y h(s(x) +1)(/) = s(y)
yfl—>nu11 h(s(y))(I") = nil

18

Simple properties on memory states

» The memory heap has at least two cells (size > 2):
—emp * —emp

I
» The memory heap has exactly one cell at address x (x +— e):

I
x — e A —(size > 2)

» The variable x is allocated in the heap (alloc(x)):

i
(x <= null)—=L

10

On the complexity of SL

>

Model-checking, satisfiability and validity for SL are
PSPACE-complete problems.

PSPACE-hardness is from
[Calcagno & Yang & O'Hearn, FSTTCS 01].

PSPACE upper bound is obtained thanks to a “small memory
state property”.

PSPACE upper bound of SL without arithmetics can be
obtained by translation into a “separation-free” version.
[Lozes, SPACE 04].

SL + 3 is undecidable [C. & Y. & O'H., FSTTCS 01].
even with a unique label [BDL'08].

20

Small store property

» Standard property: A is satisfiable iff there is a store s such

that (s,0) =st, ~(A— 1).

> Refinement: A is satisfiable iff there is a store s such that
> (5,0) Est ~(A- 1),
» for each variable x € Y, s(x) < (|Y|+ 1) x max e,
where

» Y is the set of variables occuring in A,
» ¢ is the set of indices / such that x + i occurs in A for some
variable x.

21

Temporal Separation Logic

» To combine spatial properties and temporal properties
» What are the modes of combination?

See e.g. multidimensional logics in [Gabbay et al., Book 03].
» Which problems are decidable?

LTL with zero tests and incrementation is undecidable.
» How the memory states are updated?

constant heap, programs without destructive update, etc.
» To add recursion in SL.

» To extend the automata-based approach for model-checking?
[Vardi & Wolper, IC 94].

» LTL over concrete domains
See e.g., [Esparza, ICALP 94; Demri & D’Souza, IC 07].
29

LTL operators in a nutshell

X¢: next-time ¢

o) —@D—O—O—O
$1U2: ¢1 until ¢

@@ 0@

F¢: sometimes ¢

E—O—O0—0O—®

About plain LTL

» Formulae: ¢ ::=p | =¢ | ¢ AW | Uy | Xo.
» Models: o: N — P(PROP) and o,i = p iff p € o(i).
» L(¢) = {o € (P(PROP))¥ : 0,0 | ¢}.

> ¢ ~» Biichi automaton A such that L(¢) = L(Ay).
[Vardi & Wolper, IC 94].

> Ayl is in 2002,

» Model-checking and satisfiability are PSPACE-complete.
[Sistla & Clarke, JACM 85].

24

The logic LTL™™

> Syntax
ex= x| null | Xe (expressions)
ma= e=¢€] e+i Le (atomic formulae)
A= w | ANB| -A (classical fragment)
| AxB| A=B| emp (spatial fragment)
o= A| Xo| oUd' | o AN@' | —¢ (temporal formulae)

» Examples

G (alloc(x) = F alloc(y))

GF(size > 2) (Xx=x)U(y < z)

25

Semantics
Models: elements of (S x H)“ of the form p = (s;, h;)i>o0.

ptE e=¢é ifflelpe=0€Tpt with[Xelpe=1elpens
ptle eticne iffh([elpeti)=1¢ Tpe
p,t ': A1 x A iff 3 hy, hy s.t. hy = hy * hy,
plhe «—], t = Ax,
and plhy « hy], t = Az.
ptE A=A iff VH', if hy LW and p[h; — W], t E A;
then plhy — hx], t = As.

ptE Xo iff p,t+ 1 = ¢.

ptE U iff 3t" > t such that p, t' = ¢/,

and Vt’z’é t<t' <t p,t'E o

Satisfiability problems

» Satisfiability problem SAT (Frag) with underlying fragment
Frag C SL.

» Problem SAT(Frag) with constant heap
— temporal language allows us to explore the heap.

» Problem SAT; ;. (Frag) with a fixed initial heap.

27

A class of programs manipulating pointers
» Set of instructions
instr := x:=y | skip

|x=y—=l|x—1l:=y
| x :=cons(h : x1,.., Ik : xk) | free x,/

| x:=yli] [x[]:=y
| x =malloc(/) | free x,i

» Programs are finite-state automata with transitions labelled
by instructions and equality tests.

» A program without destructive update admits runs with
constant heap.

28

Model-checking problems

» MC(Frag): given ¢ in LTL™®" with state formulae built over
Frag and a program PROG of the associated fragment, is there
an infinite computation p of PROG such that p,0 | ¢?

» MC¢, (Frag): idem with fixed initial memory state and no

destructive update.

20

Fragments with decidable temporal reasoning

» SL fragments:

Classical fragment (CL) Record fragment (RF)
A= e:e’|x+iti>e A= e:e’|x<i>e
| ANA| A | AxA| A=A| emp
| ANA] -A

» Theorem: The satisfiability problems for LTL™“"(CL) and
LTL™“"(RF) are PSPACE-complete.

20

Bounding the syntactic resources

> Test formulae
e:=(x,u) | null fu=e+i
I
pu=Ff<e | alloc(f) | e=¢€ | size > k
» u i keN,

» u encoded in unary since (x, u) ~ X"x,
» x is a variable and [is a label.

» Measure p restricts the test formulae
w=(mye,w,X,Y) €N xP¢(N) x N x Pr(Lab) x Pr(Var)

> 7, : set of test formulae restricted to the resources from the
measure.

A1

Symbolic models and abstraction
» Symbolic model: o : N — P(7,).
> Abstraction: p € (S x H)¥ +— Abs,(p) € P(7,)“.
Abs,(p)() E{A €T, : p,il= A}
» See also resource graphs in [Galmiche & Mery, JLC'08].

» Symbolic satisfaction relation: o,/ =, ¢ defined by induction

on ¢ with the base case: 0, =, A &

Fsu (A A A A\ A = A

A'ea(i) A'e(T\a (i)

D

Checking satisfiability with symbolic models

» Lemma: ¢ in LTL™“"(RF) is satisfiable iff there is a
symbolic model o : N — P(7,,,) such that

» o symbolically satisfies ¢ (0,0 =, ¢)
» there is a model p of LTL™™ such that Abs,(p) = o.

> For instance, {Xx = X?x,...},{x # Xx,...}... has no
concrete models.

2

The generalized Biichi automaton A}

> @ is the set of atoms of ¢ (sets of subformulae).
» I ={XeQ:pec X}
> ¥ =P(7,).
> X 2 Y iff
1. for every atomic formula A of X, |=s1, Ay = AX"x — (%, u)].
2. for every X¢' € cl(¢), X¢' € X iff ¢/ € Y.
Let {p1Ud], ..., pnUd)} be the set of until formulae in c/(¢).
We pose F = {Fi,...,F,} where
Fi={Xe€Q:¢iUp; & X or ¢ € X} fori € {1,...,n}.

v

v

Lemma: Let ¢ in LTL™*(RF) and p1 > 4. Then, L(Ag) is
the set of symbolic models satisfying ¢.

U

The automaton AL, for consistency

> =P(T,), Q=1=F=%,

> a2 o fF:
1. A,, A, are satisfiable, and a = &/,
2. for every formula (x, u) = (x’, u') € 7, with u, v’ > 1,
(x,uy =&) eaiff (x,u—1) = (x',v/ —1) € a".
» Lemma: Let ¢ in LTL™*™(RF) and p = p. Then L(AL,,) is
the set of symbolic models being the abstraction of some
concrete model.

[

Other decidable satisfiability problems

> SATSE (Frag): satisfiability problem of the fragment Frag

init
with fixed initial memory state and constant heap models.

» Theorem:

» SATS. . (RF) is PSPACE-complete.

init
Proof by reduction to SAT(RF) by internalizing the initial
memory state and the fact that the heap is constant.
» SATS.,(CL) is PSPACE-complete.
Similar internalization.
» SATS..(SL\ —) is PSPACE-complete.

Proof by reduction to SATS.,(RF) in order to eliminate the
arithmetic expressions.

26

Other decidable problems

» MCZ,(RF) is PSPACE-complete.
Proof by reduction into SATS ., (RF).

init

» MCZ,(SL) is PSPACE-complete.
Proof by reduction into LTL model-checking.

» Replacing X and U by a finite set of MSO definable preserves
the PSPACE upper bound.

7

Satisfiability problems

» Theorem: SAT(SL) and SAT(SL \) are ¥1-complete.

» Proof by reducing the recurrence problem for ND Minsky
machines [Alur & Henzinger, JACM 94].

» Incrementation is encoded thanks to

Xg—=y Ax+l—=y) AN " (Xx—=y % x+1—=y)

28

An undecidable model-checking problem

>

>

List fragment LF: RF with a unique label.
Theorem: MC(LF) is 9-complete.
Reduction from the halting problem for Minsky machines.
Maximal value of counters:
i R R Y i o e

The length of the list starting at x; encodes the value of the
counter C;.

Preliminary verification to check that z points to a list.

Decrementing C; is simulated by x; := x; — next.

20

Summary of main complexity results

MC | MCT | MCT, SAT | SAT® | SATY,
LF Y1c | ¥9-c. | PsPaCE-c. | PSPACE-c. | ¥9-c. | PSPACE-c.
CL and RF | X}-c. | ¥%-c. | psPaCE-c. | PSPACE-c. | ¥%-c. | PSPACE-c.
SL\{—=} | Zi-c. | Z%c. | pspACE~— Yic Y%c. | PSPACE-c
SL Yi-c. | ¥%-c. | PspacE-c Yi-c. Yic Yic

40

Conclusion and perspectives

» Introduction of a logic mixing temporal operators and
assertions from separation logic.

» Characterization of the complexity of model-checking and
satisfiability problems for fragments and under different
hypotheses.

» Some open problems:
» Which classes of constraints on successive heaps restore
decidability?
» How to add recursion to separation logic while preserving
decidability?

41

Some bibliographical references
» Separation logic and verification
[Reynolds, LICS 02]

» Complexity results on separation logic
[Calcagno & O'Hearn & Yang, FSTTCS 01]

» Propositional separation logic expressiveness
[Lozes, SPACE 04]

» Tableaux and resource graphs for separation logic
[Galmiche & Mery, JLC 08]

» LTL over concrete domains
[Demri & D’'Souza, IC 07; Gascon, PhD 07]

49

	Motivations
	Analysis of pointer programs
	Our goals

	Separation in a nutshell
	Hoare triples
	Temporal extension
	Definition

	Symbolic approach
	Symbolic models
	Automata

	Decidability results
	Satisfiability problems
	Model-checking problems

	Undecidability results
	Undecidable satisfiability problems
	Model-checking problems

	Concluding remarks
	Summary
	Conclusion
	Bibliographical references

