
2008-04-11 1

Configuration and Deployment of Distributed
Real-time Embedded Applications Using an

Architecture Description Language

Bechir ZALILA (bechir.zalila@enst.fr)

2008-04-11 2 Bechir Zalila - MeFoSyLoMa

Definitions

•  Deployment : “Placement of the distributed application
components on their corresponding physical locations and
preparing them to be run”
 Requires the placement of additional middleware components

o Send messages through the network from sender nodes (stubs)
o Receive messages from the network on receiver nodes (skeletons)
o Addressing tables to allow nodes to “reach” each others

•  Configuration: “The opportunity to parameterize the
components selected and placed during the deployment phase”
 Communication protocol parameters
 Number of the communication channels to be opened on each node
 Data marshalling/unmarshalling parameters

2008-04-11 3 Bechir Zalila - MeFoSyLoMa

Deployment and Configuration: Origins

•  Middleware architectures that help D&C
  Configurable middleware (TAO…)

o  Components selected and parameterized depending on the application properties
o  Uses design patterns

  Schizophrenic middleware (PolyORB…)
o  Cohabitation and interoperability between heterogeneous distribution paradigms
o  Choice of the concurrence profile

•  Standards that make D&C easier
  OMG’s Deployment and Configuration Specification

•  Tools that automate D&C
  COSMIC: Based on CCM and TAO
  AUTOSAR: Flexibility and scalability for automotive systems

•  Critical systems additional requirements
  Ravenscar profile (Ada)

o  Guarantee the static analyzability of high integrity systems
  SPARK (Ada)

o  Add annotations to Ada code to allow performing proofs on the applications

2008-04-11 4 Bechir Zalila - MeFoSyLoMa

Research Issues

•  Building a production process that
includes:
  Analysis of the distributed application

o Semantics, schedulability,
verification…

o Analyses often not correlated and
must be done by different tools

o Compatibility with well-known
analyzes (RMA…)

  Deployment of the distributed
application

  Automatic configuration of the
middleware according to the
application properties

  Automatic Integration along with the
user components

User Code User Code

Large
Middleware

Library

Small Amount of
Generated Code

Large Amount
of Generated

Code.

Middleware
Components
Dedicated to

the Application

Minimal
Middleware

✓ ✗

2008-04-11 5 Bechir Zalila - MeFoSyLoMa

Objectives

•  Model and analyze DRE applications
 ADLs, especially SAE AADL (Architecture Analysis & Design Language)

•  Deploy and configure an ad hoc middleware
 Execution platform for the AADL
 Schizophrenic middleware architecture

•  Rely on a massive code generation
 Encapsulate the user code (glue code)
 Produce a large part of the middleware

 Generate for several languages (Ada, C…)
 One code generator per language

o Easily extensible production process

2008-04-11 6 Bechir Zalila - MeFoSyLoMa

Approach: Modeling

•  Specify a subset of AADL that must be used by the user
  Additional semantic analyses to ensure model coherence

•  Rules to interface user code with generated glue code
  Data type mapping rules
  Subprogram mapping rules

•  Rules to interface user code with applicative components
  Access to thread interfaces
  Shared data

•  New AADL properties to control deployment
  Programming language
  Execution platform

2008-04-11 7 Bechir Zalila - MeFoSyLoMa

Approach: Middleware

•  Design and build a minimal middleware which contains the
components that are common to all applications
 One minimal middleware per programming language

o Same provided services
 Guarantee an efficient and high-performance middleware core layer
  The biggest part of the middleware is automatically generated

•  Components:
  Task archetypes

o Periodic tasks
o Sporadic tasks
o Timed tasks

 Communication protocols
  Low level transport layers

2008-04-11 8 Bechir Zalila - MeFoSyLoMa

Network

Generated Applicative Components

Generated Middleware

User
Code

User
Code

User
Code

Minimal Middleware
• Task archetypes
• Communication protocols
• Transport low level layers

• Task instances
• Transport high level layers
• Data sharing handling

• Data types
• Subprograms
• Interface accessors
• Shared data Generated Applicative Components

Generated Middleware

User
Code

User
Code

User
Code

Minimal Middleware
• Task archetypes
• Communication protocols
• Transport low level layers

• Task instances
• Transport high level layers
• Data sharing handling

• Data types
• Subprograms
• Interface accessors
• Shared data

Approach: Code Generation

•  Automatically generate code depending on the AADL
component properties
 One code generator per programming language
 Generate applicative components and middleware components

2008-04-11 9 Bechir Zalila - MeFoSyLoMa

Code generation (1/2)

•  Classical approach
  Model processing and model transformation framework (meta-modeling, Eclipse)
  AADL syntactic tree traversal and “on the fly” code generation

•  Motivation for our approach
  An experience and a set of tools to manipulate abstract syntax tree and generate

code from description languages (Conception of an improved IDL compiler)
  Total control of the production process while still having a maintainable product
  Better handling for the dependency against a well known API

•  Adopted approach
  Generator structure very similar to a compiler:

o  Frontend
o  Instantiation
o  Expansion
o  Backend

  Build an abstract syntax tree (AST) for the target language by applying transformation
rules on the AADL tree

  Code generation from the target AST

2008-04-11 10 Bechir Zalila - MeFoSyLoMa

Code generation (2/2)

Instance
Tree Semantic

Analyses
+

Instantiation

Ada Code
Printer

C (AST)
C Code

Printer C Tree Converter

AADL model
+

Environment
requirements

Valid
Decorated

Instance Tree Expansion
+

Advanced Analyses
(schedulability)

Ada (AST)

AADL (AST)
AADL Code

Printer

AADL (AST)

Parsing
+

Syntactic Checks

2008-04-11 11 Bechir Zalila - MeFoSyLoMa

Results: 1 - Production Process

AADL (Instance)

Configuration Compilation

User Code

Generated
Application components

Generated
Middleware components

Minimal Middleware

Configured Middleware

Makefiles

Application
Ready to run

2008-04-11 12 Bechir Zalila - MeFoSyLoMa

Results: 2 - Analyzable Code Generation

•  Generate only the code the application needs
•  All resources and requirements computed at code generation time

  No runtime configuration (communication protocol…)
o No dynamic allocation

  No complex circuitry to select a service at runtime
o No object oriented programming

•  Hard real time constraints specific to High Integrity (HI) systems
  Analyzable concurrency model:

o Ravenscar profile, Ada
o Equivalent concurrency profile for the C language (Work in progress…)

  Restrictions of the programming languages to the high integrity systems
o Even more restrictive than the Ravenscar profile

  Interface with GNAT (gnatcheck, gnatstack, gnatmetric)
o Advanced memory verification (Ada)

2008-04-11 13 Bechir Zalila - MeFoSyLoMa

Results: 3 - Middleware

•  PolyORB-HI: an AADL runtime
 Supports AADL constructs

o Periodic and sporadic threads, data sharing, etc.
 Automatically configured from the AADL model

o Resources computed and allocated statically
o No intervention required from the user

 Small memory footprint
o The larger part of the application is produced during code generation

 Conformant to the Ravenscar Profile and the HI system annex
 Contributed to the thematics of “middleware factories”

o For each DRE application, generate a dedicated middleware

•  Ported to several embedded platforms
 Native
 ERC32
  LEON2

2008-04-11 14 Bechir Zalila - MeFoSyLoMa

Results: 4 – Tool chain

•  Continuation of the research
work of T. Vergnaud

•  Ocarina: libraries and tools to
manipulate AADL
 AADL parsers and printers
 Semantics verification

•  Specific operations
 Model transformation
 Proposition on configuration and

code generation

•  Code generation
 Ada/PolyORB
  (Ada, C)/PolyORB-HI

Core
Library

AADL Model

Specific Analyzers
(Hardware checks…)

Model
Transformation Code

Generators

Petri Nets
(CPN-AMI)

Sched. Analysis
(Cheddar) Ada / C AADL

PolyORB

Specific Analyzers
(Hardware checks…)

PolyORB-HI

2008-04-11 15 Bechir Zalila - MeFoSyLoMa

Case study: MPC (Multi-Platform Cooperation)

1s

Send

Receiver
Local
Object read

update

500ms 100ms

Update Read Watch

SC_2

SC_3

Data_Source: out
event data port

Data_Sink: in
event data port

Receiver_Thread Watcher_Thread

SC_1

AADL Process
as Partition

AADL Thread
as Ada Task object

AADL Data
as Ada Protected
object

Receiver
Local
Object read

update

500ms 100ms

Update Read Watch Data_Sink: in
event data port

Receiver_Thread Watcher_Thread

SpaceWire

LEON LEON

LEON

Sender_Thread

Follower

periodic sporadic

Leader

Follower

Shared
object

periodic

2008-04-11 16 Bechir Zalila - MeFoSyLoMa

Case study: Metrics

•  Most of the interaction patterns
  Periodic and sporadic threads
  Shared data
  Distribution performed transparently
  Configuration and deployment of the

nodes

•  Verification of the AADL model
  Links between the hardware and the

software resources
  Data types
  Connection coherence (data flow)
  Schedulability (Cheddar)

•  ASSERT project
  Final demonstration

•  Generated code
  All the code is generated by Ocarina

from the AADL model (except the
behavioral part)

  Conform to all HI system restriction

•  Executables
  Memory footprint: 1.1MB

o  Generated MW : 54,3 KB
o  Minimal MW : 47,7 KB
o  User code : 8,4 KB
o  Task stacks : 512 KB

 Allocated statically in the executable
o  OS Libs : 249,7 KB
o  Drivers : 28,3 KB
o  Kernel : 238 KB

  Demonstration
o  LEON2 + SpaceWire Bus
o  Simulated using tsim Pro

2008-04-11 17 Bechir Zalila - MeFoSyLoMa

Conclusions and Perspectives

•  Fulfilled objectives
  Proposition of a production process for the DRE systems
  Instantiation of this process using Ocarina and PolyORB-HI

o Ocarina: Modeling, analysis and code generation
o PolyORB-HI: Runtime for the AADL

  Possible interface with generated user code
o  LUSTRE
o SDL

  Positive experimentation and feedback for the examples
o ASSERT project partners
o SAE partners

  Successful final demonstration of the ASSERT

•  What remains to be done
  Support of AADLv2
  Writing of the code generation annex for AADLv2 standard
  A performance comparison with other tools

