
Pushdown model generation
for binary code

Mizuhito Ogawa@JAIST
with Nguyen Minh Hai, Quan Thanh Tho@HCMUT

Main activity of our group

• Well-Structured Pushdown System (WSPDS)
9Combine WSTS and PDS (P-automata technique)
9Forward: Acceleration for VASS extensions.
9Backward: Antichain for various Timed PDA

• Confluence of non-linear and non-terminating TRSs.
9Ultimate goal: non-E-overlapping right-linear ⇒ CR

• Pushdown model generation for binary code

• SMT for nonlinear constrains over reals. (QFNRA)
9ICP based approximation refinement for inequality.

Why binary code analysis?

• System software : legacy code, commercial protection
9Compiled from high-level programming language
9Large
9Possibly multi-thread

• Malware : distributed by binary only, no copyright☺
9Control obfuscation
9Often small
9Mostly single-thread (though recently there are

observed likely multi-threaded; but not confirmed)

Binary code difficulty

• No clear distinction between data and code.
9Code loaded on memory can be modified.
9Interpretation can be higher-order.

• Dynamic interpretation of CISC (e.g., x86)
9Instructions have variable length.
9Memory location can be instruction operands as

registers.

Dynamic Interpretation

5a4d903040ffff0b8
00040000000000000
00000a801f0eebab4
00cd09b8214c0121c
d6854736970206f72
72676d6163206e616
f6e2074656272206e
756920206e4f44205
36f6d6564d2ea0d24
000175ddb1d761...

0x1000: addl $0x2a, %eax
0x1003: cmpl $0x0, %eax
0x1006: jae 0x100f
0x1008: movl $0x5, %ebx
0x100d: jmp 0x1017
0x100f: subl $0x7, %eax
0x1012: movl $0x3, %ebx
0x1017: addl %ebx, %eax
0x1019: ret

Magic word (ZM)
Entry point address

Instructions

Disassembly

Today’s talk

• Binary analysis = model generation + model checking

• Pushdown model generation of binary executable
9Targeting on obfuscation techniques of malware.
9Concolic testing (dynamic symbolic execution) to

decide control destinations.
9Will apply modular weighted pushdown MC.

Self-modifying binary example

• Next instruction is
decided incrementally.

• Instructions can be
overwritten.

33C0EB00B803104000C6000A
EBF481FB001000007401C36A
00E816000000052800000003C
3FFE040E801000000…..

00401000: XOR EAX, EAX
00401002: JMP SHORT 00401004
00401004: MOV EAX, 00401003
00401009: MOV BYTE PTR DS:[EAX], 0A
0040100C JMP SHORT 00401002
00401002: JMP SHORT 0040100E
0040100E: CMP EBX,1000

0A

1000

1002

1009

100C

100E

1004

Control obfuscation techniques of malware

• Indirect jump : jmp eax, RET
9Obfuscate destination by arithmetic.
9Value of eax (RET) will be modified.

• Self-modification code (SMC)
9Modify code loaded on memory
9Self-decryption

• Structural Exception Handler (SEH)
9Modify fs[0], which originally points

to the system exception handler.
9Intended exception.

decrypt

header

body

modify

stack

fs[0]

Initialize
SEH

System EH

code

exception

Roadmap
• Background : Obfuscation techniques and aim

• Anti-obfuscation : Principle ideas

• BE-PUM (Binary Emulation for Pushdown Model
generation) Implementation : Practical design

• Experiments : Statistics, observation, and limitation

• Related and Future work

Fromalize X86 operational semantics

• Memory model
9Address space M
9Register, flags

M

16 registers 9 flags

S (stack)

32 bit vector representation

Model generation idea (1) Dynamic interpretation

• Symbolic execution.
State = (〈binary location, assembly〉, path condition)
Transition = (〈loc, instr〉, ψ) ↪ (〈loc’, instr’〉, ψ’) with

〈loc’, instr’〉 = next(〈loc, instr〉)
ψ’ = ψ∨（SideCond∧post(ψ(〈loc, instr〉))

• On-the-fly

…
Until convergence

Decided by concolic testing

entry

Without loop invariant,
Under-approximation

Model generation ideas (1’) SMC

• Generating an equivalent code.
9States = { (location, instruction, path condition) }
9Model node = { (location, instruction) }

1000, “xor eax eax”

1002, “jmp 1004”

1004,“mov eax 1003”

1000

1002

1009

100C

100E

1004

1009,“mov ds:[eax] 0A”

100C, “jmp 1002”

100E, “cmp ebx 1000”

1002, “jmp 100E”

CFG Equivalent code

McVeTo, Syman,
At LORIA

Model generation idea (2) SEH, RET obfuscation
• Pushdown model
9Handling exception requires context sensitivity
9RET address modification is naturally modeled.

• Assumption
9Single thread.
9Stack modification occurs only at the top frame.

• Pushdown model checkers: Weighted PDS, WPDS+

RET address modification

Model generation ideas (3) Indirect Jumps
• Indirect jump
9Encapsulate the destination by indirect pointers.
9Often the destination is overwritten/modified.

• Static vs dynamic (hybrid)
9Static : CEGAR + Static symbolic execution
9Dynamic (hybrid) : Dynamic symbolic execution

Over-approximation by static analysis
SSE checks feasibility

DSE
(concolic testing)

Static = CEGAR+SSE Dynamic = DSE

May miss (under-approximation)

Choice of binary emulation
• Full Windows32 emulation (e.g., Syman)
9State = memory snapshot
9Pros. Can handle API in the emulation
9Cons. Models are too detailed (easily explode).

Symbolic execution would be not possible

• Single user process emulation
9State = (binary location, corresponding assembly)
9Pros. Control structure abstraction nearer to CFG
9Cons. System call (API) is treated as a stub.

• Dataflow will be re-computed by weighted pushdow
model checking.

Roadmap
• Background : Obfuscation techniques and aim

• Anti-obfuscation : Principle ideas

• BE-PUM (Binary Emulation for Pushdown Model
generation) Implementation : Practical design

• Experiments : Statistics, observation, and limitation

• Related and Future work

Engineering difficulty
• Huge numbers of x86 instructions & Windows API
9＞1000 x86 instructions : Complex semantics
9＞4000 Windows APIs : Not all are specified

–Virus probes “sand-box” by unspecified API call.

• Choice of support by statistics (by Jakstab)
9Most frequent 64 x86 instructions as SE
9Most frequent 45 APIs as stub

4362 classified malwares from VX Heaven

• VX Heaven: Malware classification

• Instruction Occurrences

• Coverage in VX Heavens (detected by Jakstab)

Selected 64 x86 instructions & 45 Windows APIs

System call (API) as stub
• Symbolic execution requires the conversion from

precondition to postcondition of an API.
9Obeying to Microsoft Developer Network.
9Output of API is detected by JavaAPI.

• For instance, GetModuleFileNameA
9Pre: Stack config.

9Post: EAX= size_file_name

stack
size_file_name

handle_module
pointer_to_file_name

…

+4

+4

Frontiers

Single-step
Symbolic Execution

Instr(Env,m)
Jakstab 0.8.3

Feasibility check
SMT: Z3 4.3

Control
instructions

Data
instructions

Yes

No

Binary Emulation
of user process

Controlled
Sandbox

Stack

Memory

Register

Flag

(k, asmk,ψk)

(k, asmk,ψk) : New region?
〈(k, asmk),ε〉 ↪ 〈(m, asm), (m’, asm’)〉 : New rule?

Pushdown Model
〈(k, asmk),ε〉 ↪ 〈(m, asm), (m’, asm’)〉

Symbolic states
(k, asmk,ψk)

Stub of API

System call
(pre‐condition)

Return
(post‐condition)

Java API

(Output)

BE-PUM (Binary Emulation for Pushdown Model)
Architecture

Java API
System call

(API)

Roadmap
• Background : Obfuscation techniques and aim

• Anti-obfuscation : Principle ideas

• BE-PUM (Binary Emulation for Pushdown Model
generation) Implementation : Practical design

• Experiments : Statistics, observation, and limitation

• Related and Future work :

Experiments on 2028 malwares
Jakstab, IDApro, BE-PUM

• Generally, Jakstab terminates much earlier, IDApro is
quite imprecise, compared to BE-PUM

Number of nodes

ID

Experiment statistics (converged case)

SEH

SEH

SEH
&

SMC

Indirect
jump

Observation on experiments of virus
• With source code: Aztec, Bagle, Benny, Cabanas
9Jakstab often fails to find the entry.
9IDApro may explore more, but in a wrong direction.
9BE-PUM is under-approximation, even when it

converges. Often terminate with unknown
instruction, API, and address (e.g., system EH).

• Without source code: Seppuku.1606
9From differences between results of BE-PUM and

IDApro, we found SEH and self-modification.

Observation: Indirect jump

• Bagle.bf

• Aztec (well-investigated)
9Similar techniques, and looks for the base address

of kernel32.dll.

0040B08A call 0040B332
0040B08F E8 EB 13 EB 02

0040B08F
…

ecx

0040B090

0040B08F0040B090

IDApro BE-PUM

stack

Observation : SEH (Structural Error Handler)
• Eva.a : exception occurrence is obfuscated.
9As Windows standard, fs:[0] initially points to the system

exception handler.
9New frame pushed at 00401012 and modified at 00401015.
9At 00401018, access violation (inc at 00000000).

edx = 0
esp = 00401007

Violation occurs!

Observation : Self-decryption

• Cabanas.2999: Self-decryption + SEH

XORing key

Access violation
eax= FFFFFFFE

Decryption loop

SEH

ecx was set to 1a1h

Investigation of Seppuku.1606

• Manual investigation with help of Ollydbg …
Opcode at 00401646: E8FFFFF9B5 → E800000000

SEH

OllyDbg (www.ollydbg.de)

• 32bit assembler level analyzing debugger for windows

When branches are missed

• Typical number of branch : 20 branches in length 500
(Windows/System32/HOSTNAME.exe, 12k bytes)

• Missing reasons
9Opaque predicates. BE-PUM correctly detects in

Cabanas.2999.
9API stub. API output is given by JavaAPI (just one

instance in the environment), and assumptions.
9Loop unfolding. Bounded unfolding of a loop may

miss later exit from the loop.

Roadmap
• Background : Obfuscation techniques and aim

• Anti-obfuscation : Principle ideas

• BE-PUM (Binary Emulation for Pushdown Model
generation) Implementation : Practical design

• Experiments : Statistics, observation, and limitation

• Related and Future work

Related work: model generation (binary CFG rebuilt)

• Static analysis
9CodeSurfer/x86 (CC04/05) : Memory-as-state,

static analysis comes first.
9McVeto (CAV10) : On-the-fly pushdown model

generator, CEGAR is used for indirect jumps.
9JakStab (VMCAI09,12): BE-PUM built on JakStab

• Dynamic testing
9BIRD (CGO06) : Disassembly
9BINCORE/OSMOSE (CAV11): Memory-as-state,

DBA (Dynamic Bit-vector Automaton)
9Syman (ICSE06) : On-the-fly diassembly, Windows

emulator Alligator (not conclic testing)

Related work
• Pushdown model checking
9SCTPL (TACAS12), SLTPL (TACAS13)

–Target on binaries without self-modification
(IDApro can handle)

–Malicious behavior = system calls

• Self-decryption, packer
9PolyPack (ACSAC06) : Testing based
9Renovo (RM07)
9At Nancy/LORIA: Trace analysis

Future work
• Conformance testing of generated models.
9Formalization of semantics of x86/API is difficult.

• Weighted pushdown model checking.
9Target: Obfuscation, infection, malicious behavior
9Towards automatic obfuscation classification.

• Loop handling
9More precise under-approximation.

